MATH 6210 - Measure Theory and Lebesgue Integration Fall 2013
Instructor: Raul Gomez
The Riemann integral poor convergence properties make it unsuitable for applications in probability, functional analysis and PDEs. A much more convenient and flexible theory was devised by Lebesgue at the beginning of the 20th century. In this course we will introduce Lebesgue integration theory and explore its applications to L-p spaces and related topics.
The course will be based on the books The Elements of Integration and Lebesgue Measure by Robert Bartle, and Real Analysis by Halsey Royden. It is designed for students with a strong interest in real analysis and its applications to fields like probability, statistics, economics, functional analysis and PDEs among others.