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Pants Decompositions of Surfaces

Allen Hatcher

In studying the geometry and topology of surfaces it often happens that one con-
siders a collection of disjointly embedded circles in a compact orientable surface Σ which
decompose Σ into pairs of pants — surfaces of genus zero with three boundary circles.
If Σ is not itself a pair of pants, then there are infinitely many different isotopy classes
of pants decompositions of Σ. It was observed in [HT] that any two isotopy classes of
pants decompositions can be joined by a finite sequence of “elementary moves” in which
only one circle changes at a time. In the present paper we apply the techniques of [HT]
to study the relations which hold among such sequences of elementary moves. The main
result is that there are five basic types of relations from which all others follow. Namely,
we construct a two-dimensional cell complex P(Σ) whose vertices are the isotopy classes
of pants decompositions of Σ, whose edges are the elementary moves, and whose 2-cells
are attached via the basic relations. Then we prove that P(Σ) is simply-connected.

Now let us give the precise definitions. Let Σ be a connected compact orientable
surface. We say Σ has type (g, n) if it has genus g and n boundary components. By a
pants decomposition of Σ we mean a finite collection P of disjoint smoothly embedded
circles cutting Σ into pieces which are surfaces of type (0, 3). We also call P a maximal
cut system. The number of curves in a maximal cut system is 3g − 3 + n, and the number
of complementary components is 2g − 2 + n = |χ(Σ)|, assuming that Σ has at least one
pants decomposition.

Let P be a pants decomposition, and suppose that one of the circles β of P is such that
deleting β from P produces a complementary component of type (1, 1). This is equivalent
to saying there is a circle γ in Σ which intersects β in one point transversely and is disjoint
from all the other circles in P . In this case, replacing β by γ in P produces a new pants
decomposition P ′. We call this replacement a simple move, or S-move.

Figure 1: an S-move and an A-move

In similar fashion, if P contains a circle β such that deleting β from P produces a com-
plementary component of type (0, 4), then we obtain a new pants decomposition P ′ by
replacing β by a circle γ intersecting β transversely in two points and disjoint from the
other curves of P . The transformation P → P ′ in this case is called an associativity move

1

An S-move An A-move
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