
CORNELL UNIVERSITY MATHEMATICS DEPARTMENT SENIOR THESIS

The Logarithmic Sobolev Constant of Some
Finite Markov Chains

May 2006

A THESIS PRESENTED IN PARTIAL FULFILLMENT
OF CRITERIA FOR HONORS IN MATHEMATICS

BACHELOR OF ARTS, CORNELL UNIVERSITY

THESIS ADVISOR(S)

Wai Wai Liu

Laurent Saloff-Coste
Department of Mathematics



1

The Logarithmic Sobolev Constant of some finite Markov Chains

1. Introduction

The Perron-Frobenius Theorem asserts that an ergodic Markov chain converges
to its stationary distribution at an exponential rate given asymptotically by the
second largest eigenvalue, in modulus. However, most applications of finite Markov
chains, such as the Metropolis algorithm, requires the knowledge of how many steps
are needed for the chain to be closed to equilibrium. The asymptotic result does
not give answer to this question.

The logarithmic Sobolev constant was introduced in 1975 by Leonard Gross
in the study of diffusion processes and Dirichlet forms. A logarithmic Sobolev
inequality is an inequality of the form∫

Ω

|f(x)|2 ln |f(x)|2ν(dx)

≤ ρ

∫
Ω

|grad f(x)|2ν(dx) +
∫

Ω

|f(x)|2ν(dx) ln
∫

Ω

|f(x)|2ν(dx),

where ν is a probability measure on the space Ω and the logarithmic Sobolev con-
stant α is the inverse of the smallest ρ such that the inequality holds for all f in
the Dirichlet space. In the context of finite Markov chains, it turns out that α is
closely related to the time to equilibrium (Theorem 1).

The natural question to ask is whether one can compute or estimate α. Unlike
the problem of finding eigenvalues, finding α seems to be a very difficult problem.
In this paper, we will present some techniques for estimating α and some examples
which we compute the exact value of α.

Acknowledgements: I would like to thank both my faculty thesis advisor Professor
Laurent Saloff-Coste and my peer thesis advisor Guan-Yu Chen. Without their
encouragement and help, this thesis would not exist.

2. Preliminaries

A discrete time Markov chain on a finite state space X is a stochastic process
X ∈ XN, X0 with some starting distribution µ on X that satisfies the following

P{Xn+1 = y|Xn = x,Xn−1 = xn−1, ..., X1 = x1, X0 = x0} = Pxy

for all states x0, x1, ..., xn−1, x, y in X and n ≥ 0. In words, this says that the
probability of making a jump to state y in the next step given the present state is
x is completely independent of the past and time.
We can identify a Markov chain on a finite space X by a kernel K satisfying
K(x, y) ≥ 0,

∑
y∈X

K(x, y) = 1.

The associated Markov operator is defined by
Kf(x) =

∑
y∈X

f(y)K(x, y).

The iterated kernel Kn is defined by
Kn(x, y) =

∑
z∈X

Kn−1(x, z)K(z, y).

If we set Kn
x (y) = Kn(x, y), then Kn

x (·) defines a probability measure on X which
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represents the distribution of the discrete Markov chain starting at x after exactly
n steps.
We say a probability measure π on X is invariant with respect to K if∑

x∈X
π(x)K(x, y) = π(y).

That is, starting with distribution π and moving according to the kernel K leaves
the distribution of the chain unchanged. If we assume K is irreducible, i.e. for
each x, y ∈ X there is an n such that Kn(x, y) > 0, then the invariant measure π
is unique and π(x) > 0 for all x ∈ X We will further assume that K is reversible,
that is K(x,y)

π(y) = K(y,x)
π(x) .

The continuous semigroup associated with K is defined by

Htf(x) = e−t(I−K) = e−t
∞∑

i=0

tiKif

i!
.

It follows from the definition that

Ht+s = HtHs

lim
t→0

Ht = I

If we set Hx
t (y) = Ht(x, y). Then Ht(·) is a probability measure on X which

represents the distribution at time t of the continuous time Markov chain (Xt)t>0

associated with K and started at x. We can interpret the process as follows.
The Markov chain makes a jump according to the rule described by the discrete
time Markov chain with kernel K started at x after independent exponential(1)
waiting times. Therefore the probability that the chain has made exactly i jumps
at time t is e−tti/i! and the probability to be at y after exactly i jumps at time t
is e−ttiKi(x, y)/i!.
The densities of the probability measures Kn

x , Hx
t with respect to the stationary

measure π will be denoted by

kn
x = kn(x, y) =

Kn(x, y)
π(y)

and

hx
t (y) = ht(x, y) =

Ht(x, y)
π(y)

3. The spectral gap and logarithmic Sobolev constant

Definition 1. The form E(f, g) = Eπ[g(I − K)f ] is called the Dirichlet form
associated with the finite Markov chain(K,π).

Notice in the case reversible (K,π), the above definition implies

E(f, f) =
1
2

∑
x,y

[f(x)− f(y)]2K(x, y)π(x)

To see this, observe E(f, f) = ||f ||22 − Eπ[fKf ] and
1
2

∑
x,y

|f(x)− f(y)|2K(x, y)π(x) =
1
2

∑
x,y

(f(x)2 + f(y)2 − 2f(x)f(y))K(x, y)π(x)

= ||f ||22 − Eπ(fKf)
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Definition 2. Let K be a Markov kernel with Dirichlet form E .The spectral gap
λ = λ(K) is defined by

λ = min
{
E(f, f)
Varπ(f)

; Varπ(f) 6= 0
}

Observe that λ is not, in general, an eigenvalue of (I −K). If (K,π) is reversible
then λ is the smallest non-zero eigenvalue of I −K.

Definition 3. Let K be an irreducible Markov chain with stationary measure
π.The logarithmic Sobolev constant α = α(K) is defined by

α = inf
{
E(f, f)
L(f)

;L(f) 6= 0
}

where L(f) =
∑
x∈X

|f(x)|2 log
(
|f(x)|2

||f ||22

)
π(x).

Notice L(f) is nonnegative by Jensen’s inequality applied to the convex function
φ(t) = t2 log t2. Furthermore L(f) = 0 if and only if f is constant.
It follows from the definition that α is the largest constant c such that the loga-
rithmic Sobolev inequality

cL(f) ≤ E(f, f)

holds for all functions f . Since L(f) = L(|f |) and E(|f |, |f |) ≤ E(f, f), one can
restrict f to be real nonnegative in the definition of α.

Theorem 1. Let (K,π) be an irreducible and reversible Markov kernel. Set

Tp = Tp(K, 1/e) = min
{
t > 0 : max

t
||hx

t − 1||p ≤ 1/e
}
,

and define π∗ = min{x ∈ X : π(x)}, log+(x) = max{0, log(x)}, then for 1 ≤ p ≤ 2,

1
λ
≤ Tp ≤ 1

2λ

(
2 + log

1
π∗

)
,

Tp ≤ 1
4α

(
4 + log+ log

1
π∗

)
and for 2 < p ≤ ∞,

1
λ

≤ Tp ≤
1
λ

(
1 + log

1
π∗

)
,

1
2α

≤ Tp ≤
1
3α

(
4 + log+ log

1
π∗

)
.

From the above theorem, we see that α gives a much sharper bound to the time
for the Markov chain to be close to its equilibrium than the bound obtained using
the spectral gap. However, unlike the spectral gap, which can be found by finding
the eigenvalues of K, we have limited tools for finding the logarithmic Sobolev
constant.
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4. Some techniques for bounding α

Theorem 2. For any chain K the log-Sobolev constant α and the spectral gap λ
satisfy 2α ≤ λ

Proof. Let g be real and set f = 1 + εg and write, for ε sufficiently small

|f |2 log |f |2 = 2(1 + 2εg + ε2|g|2)(εg − ε2|g|2

2
+O(ε3))

= 2εg + 3ε2|g|2 +O(ε3).

and

|f |2 log ||f ||22 = (1 + 2εg + ε2|g|2)(2επ(g) + ε2||g||22 − 2ε2(π(g))2 +O(ε3))
= 2επ(g) + 4ε2gπ(g) + ε2||g||22 − 2ε2(π(g))2 +O(ε3)

Thus,

|f |2 log
|f |2

||f ||22
= 2ε(g − π(g)) + ε2(3|g|2 − ||g||22 − 4gπ(g) + 2(π(g))2) +O(ε3)

and

L(f) = 2ε2(||g||22 − (π(g))2) +O(ε3)
= 2ε2Varπ(g) +O(ε3)

Now observe that E(f, f) = ε2E(g, g), use the variational characterizations of α and
λ, and let ε tend to zero, we get the desired result. �

Corollary 1. Let g be an eigenfunction correspond to the spectral gap λ.
If π(g3) 6= 0, then α < λ/2.

Proof. Follow the proof of Theorem 1, expand log up to ε3 terms, we have

|f |2 log |f |2 = 2εg + 3ε|g|2 + 2ε3g3/3 +O(ε4)

and
|f |2 log ||f ||22 = ε2||g||22 + 2ε3g||g||22 +O(ε4).

Because g is an eigenfunction corresponding to λ, it is perpendicular to the constant
function and so π(g) = 0 and a lot of terms vanish. Thus,

|f |2 log
|f |2

||f ||22
= 2εg + ε2(3|g|2 − ||g||22) + 2ε3g3/3 +O(ε4)

and
L(f) = 2ε2Varπ(g) + 2ε3π(g3)/3 +O(ε4).

By choosing appropriate ε, we find

E(f, f)
L(f)

=
E(g, g)

2Varπ(g) + 2επ(g3)/3 +O(ε2)
< λ/2.

�

From the definition of α, it is not obvious why it cannot be zero. The next
theorem ensures us that α(K) > 0 for any finite irreducible Markov chain.
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Theorem 3. Let K be an irreducible Markov chain with stationary measure π.Let
α be its log-Sobolev constant and λ its spectral gap. Then either α = λ/2 or there
exists a positive non-constant function u which is a solution of

(3.1) 2u log u− 2u log ||u||2 −
1
α

(I −K)u = 0

and such that α = E(u, u)/L(u). In particular, α > 0

Proof. We can restrict ourselves to non-negative functions satisfying π(f) = 1 when
looking for minimizer of E(f, f)/L(f). Now, either there exists a non-constant non-
negative minimizer u, or the infimum is attained at the constant function 1 where
E(1, 1) = L(1) = 0. In this second case, the proof of the previous theorem shows
that we must have α = λ/2 since for any function g 6≡ 0 satisfying π(g) = 0,

lim
ε→0

E(1 + εg, 1 + εg)
L(1 + εg)

= lim
ε→0

ε2E(g, g)
2ε2Varπ(g)

≥ λ

2

Hence, either α = λ/2 or there must exist a non-constant non-negative function u
which minimizes E(f, f)/L(f). Notice that E(u, u) and L(u) define differentiable
functions in each coordinate ui. A minimizer must have all directional derivatives
equal to zero and would satisfy (3.1). Finally, if u ≥ 0 is not constant and satisfies
(3.1) then u > 0. Suppose u vanishes at x ∈ X then Ku(x) = 0 from (3.1) and
u must vanish at all points y such that K(x, y) > 0. By irreducibility, this would
imply u ≡ 0, a contradiction. �

Lemma 1. Let (Ki, πi), i=1,...,d be reversible Markov chains on finite sets X〉 with
spectral gaps λi and log-Sobolev constants αi. Fix µ = (µi)d

1 such that µi > 0 and
Σµi = 1. Then the product chain (K,π) on X =

∏d
1 X〉 with kernel

K(x, y) =
d∑

i=1

µiδ(x1, y1)...δ(xi−1, yi−1)Ki(xi, yi)δ(xi+1, yi+1)...δ(xd, yd)

where δ(x, x) = 1 and δ(x, y) = 0 for x 6= y and stationary measure π =
⊗d

1 πi

satisfies
λ = min

i
{µiλi}, α = min

i
{µiαi}

Proof. Let Ei denote the Dirichlet form associated to Ki, then the product chain
K has Dirichlet form

E(f, f) =
d∑
1

µi

 ∑
xj :j 6=i

Ei(f, f)(xi)πi(xi)


where xi is the sequence (x1, ..., xd) with xi omitted, πi =

⊗
l:l 6=i πl and

Ei(f, f)(xi) = Ei(f(x1, ..., xd), f(x1, ..., xd))

has the meaning that Ei acts on the ith coordinate whereas the other coordinates
are fixed. It is enough to prove the result when d = 2. Let f : X1 × X2 → R be a
nonnegative function and set

F (x2) = (
∑
x1

f(x1, x2)2π1(x1))1/2.
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Write

L(f) =
∑

x1,x2

|f(x1, x2)|2 log
f(x1, x2)2

||f ||22,π

π(x1, x2)

=
∑
x2

|F (x2)|2 log
F (x2)2

||F ||22,π2

π2(x2)

+
∑

x1,x2

|f(x1, x2)|2 log
f(x1, x2)2

F (x2)2
π(x1, x2)

≤ [µ2α2]−1µ2E2(F, F ) + [µ1α1]−1
∑
x2

µ1E1(f(·, x2), f(·, x2))π2(x2).

Now, the triangle inequality

|F (x2)− F (y2)| = |||f(·, x2)||2,π1 − ||f(·, y2)||2,π1 |
≤ ||f(·, x2)− f(·, y2)||2,π1

implies that
E2(F, F ) ≤

∑
x1

E2(f(x1, ·), f(x1, ·))π1(x1).

Hence

L(f) ≤ [µ2α2]−1
∑
x1

µ2E2(f(x1, ·), f(x1, ·))π1(x1)

+[µ1α1]−1
∑
x2

µ1E1(f(·, x2), f(·, x2))π2(x2)

which gives L(f) ≤ maxi{1/[µiαi]}E(f, f). Therefore α ≥ mini[µiαi]. Testing on
functions that depend only on one of the two variables shows that α = mini[µiαi].
The proof for λ is similar. �

Lemma 2. Let (X , π, (E ,D)) and (X̃ , π̃, (Ẽ , D̃)) be two Dirichlet spaces. Assume
that there is a map p : Ω̃ → Ω such that for any f ∈ D and f̃ = f ◦ p ∈ D̃,Ẽ(f̃ , f̃) =
E(f, f). Assume further that µ is the pushforward of π̃ under p, i.e.,π̃(f̃) = π(f)
for any measureable non-negative f on X . Let λ̃ and α̃ be the spectral gap and
logarithmic Sobolev constant on X̃ . Then

α ≥ α̃, λ ≥ λ̃.

In particular, if λ̃ = α̃/2 and λ̃ = λ, then α = λ/2.

Lemma 3. Let (K,π) and (K ′,π′) be two Markov chains on the same finite set X .
Assume that there exist A, a > 0 such that

E ′ ≤ AE , aπ ≤ π′.

Then

λ′ ≤ A

a
λ, α′ ≤ A

a
α.

Proof. The inequality between the spectral gaps follows from the variational defi-
nition of λ and the formula

Var(f) = min
c∈R

∑
x

|f(x)− c|2π(x).
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To get the inequality relating the log-Sobolev constants, notice

∀x, y ≥ 0, x log x− x log y − x+ y ≥ 0

and

Lπ(f) =
∑

x

(|f(x)|2 log |f(x)|2 − |f(x)|2 log ||f ||22 − |f(x)|2 + ||f ||22)π(x)

= min
c>0

∑
x

(|f(x)|2 log |f(x)|2 − |f(x)|2 log c− |f(x)|2 + c)π(x).

Using the variational definition of α, we get the desired inequality. �

5. Examples for which α is known

Theorem 4. Let X = {0, 1} be the two point space. Fix 0 < p ≤ 1/2. Consider the
Markov kernel K = Kp given by K(0, 0) = K(1, 0) = p, K(0, 1) = K(1, 1) = 1− p.
The chain is reversible with respect to the stationary measure πp where πp(0) = p
and πp(1) = 1− p. The logarithmic Sobolev constant of (Kp, πp) on X is given by

αp =
1− 2p

log[(1− p)/p]

with α1/2 = 1/2.

Proof. For the case p = 1/2, we write f(0) = 1 + s, f(1) = 1 − s, 0 ≤ s < 1. The
fact that α1/2 = 1/2 is equivalent to

(*)
1
2
((1 + s)2 log(1 + s)2 + (1− s)2 log(1− s)2 − 2(1 + s2) log(1 + s2)) ≤ 2s2.

Let f(s) = (1 + s)2 log(1 + s)2 + (1 − s)2 log(1 − s)2 − 2(1 + s2) log(1 + s2) − 4s.
Then

f ′(s) = −8s+ 4(1− s) log(1 + s)− 4 log(1− s)− 4s log(1 + s2),

and

f ′′(s) =
−8s

1 + s2
− 4 log(1 + s2).

Now it is easy to see that on [0, 1), f has a maximum at 0, proving (*). For the case
p < 1/2, equation (3.1) is equivalent to

(4-1) pu2 + (1− p)v2 = 1,

(4-2) 2u log u =
1
αp

(1− p)(u− v),

(4-3) 2v log v =
1
αp
p(v − u).

Adding up (4-2) and (4-3) with weights p and 1− p, we have

(4-4) pu log u+ (1− p)v log v = 0,

which is independent of αp. Rewrite (4-1) and (4-4) as

(p, 1− p) · (u2 − 1, v2 − 1) = 0,
(p, 1− p) · (u log u, v log v) = 0,
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we see that (u2−1, v2−1) and (u log u, v log v) are both perpendicular to (p, 1−p),
and so one is a multiple of the other, i.e.

u log u
u2 − 1

=
v log v
v2 − 1

Define

f(x) =
x log x
x2 − 1

,

then

f ′(x) =
−1 + x2 − log x− x2 log x

(x2 − 1)2

Let g(x) = −1 + x2 − log x− x2 log x, then

g′(x) = x− 1/x− 2x log x
g′′(x) = 1 + 1/x2 − 2− 2 log x > 0 if x < 1

Since g′(1) = 0, we conclude that g′ < 0 on (0, 1), which in term shows f ′ > 0 on
(0, 1). Therefore, f is strictly increasing on (0, 1).

Notice f(x) = f(1/x) and so f is strictly decreasing on (1,∞). Therefore,
v = 1/u is the only way to have

u log u
u2 − 1

=
v log v
v2 − 1

.

Using this relation and (4-1), we discover that the only solutions to the minimizer

equation are (u, v) =
(√

1−p
p ,

√
p

1−p

)
and (u, v) = (1, 1). When p 6= 1/2, the

non-constant solution gives us

E(f, f)
L(f)

=
1− 2p

log[(1− p)/p]
<

1
2
.

Thus, by the virtue of Theorem 3, we have

αp =
1− 2p

log[(1− p)/p]
.

�

Theorem 5. Let X = Z mod 2n, n ∈ N. Consider the simple random walk on X ,
i.e. for n > 1, the Markov kernel Kn given by Kn(x, y) = 1/2 if |x−y| = 1 mod 2n
and Kn(x, y) = 0 otherwise. K1(0, 1) = K1(1, 0) = 1 and K1(0, 0) = K1(1, 1) = 0.
The chain is reversible with respect to the uniform measure and αn is given by

2αn = λn = 1− cos(π/n)

For proof, see [2]. With the above theorems and lemmas, we can get the following
interesting results concerning logarithmic Sobolev constants.

Example 1. Fix 0 < p < 1. Let X = {0, 1}d. Define the Markov chain as follows.
If the current state is x, we pick a coordinate i uniformly at random. If xi = 0
we change it to 1 with probability 1− p and do nothing with probability 1− p. If
xi = 1 we change it to 0 with probability p and do nothing with probability 1− p.
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This is the product chain of the asymmetric 2-point chain in Theorem 4 and by
Lemma 1, this chain has spectral gap λ = 1/d and log-Sobolev constant

α =
1− 2p

d log[(1− p)/p]
for p 6= 1

2

and
α1/2 =

1
2d

Example 2. Let X0 = {0, ..., d} and define the kernel

K0(i, j) =


0 if |i− j| > 1;
(1− p)(1− i/d) if j = i+ 1;
pi/d if j = i− 1;
(1− p)i/d+ p(1− i/d) if i = j.

This Markov chain counts the number of 1’s in the chain in the previous example
with and has stationary measure

π0(j) = pj(1− p)d−j

(
d

j

)
If we define p : {0, 1}d → {0, ..., d} by p(x) =

∑d
i=1 xi, then ψ̃(x) = |x| − (1− p)d is

an eigenfunction with eigenvalue λ̃ = 1/d that can pass to X0 as ψ(x) = x−(1−p)d.
Lemma 2 gives us

α0 ≥
1− 2p

d log[(1− p)/p]
with

α0 =
λ

2
=

1
2d

when p =
1
2
.

Example 3. Let X = {0, ..., n− 1} and

K(i, j) =


0 if |i− j| > 1;
1/2 if j = i+ 1, i < n− 1;
1/2 if j = i− 1, i > 0;
1/2 if i = j and i = 0 or i = n− 1.

We compare it with the 2n-cycle. Define p : {0, ..., 2n − 1} → {0, ..., n − 1} by
p(x) = 2n− x− 1 mod n. The 2n-cycle has λ̃ = 1− cos(π/n) with eigenfunctions
e±πix/n. The function f(x) = cos(π

n (x + 1
2 )) lies in the 2 dimensional eigenspace

and has the property that f(x) = f(2n−x−1) and therefore passes to {0, ..., n−1}.
By Lemma 2 and Theorem 4, α = λ/2 = (1− cos(π/n))/2

6. The 5-cycle

Chen and Shen proved that α = λ/2 for the simple random walk on the discrete
circle Z mod n when n is even(Theorem 5). Computation of the precise value of
α for odd n ≥ 5 remains open. In this section, we prove that α = λ/2 for n = 5.

Lemma 4. Let f be a function defined on non-negative real numbers by
f(t) = t log(t) if t > 0 and f(0) = 0 Then

(4.1) ∀t ≥ 0, f(t) ≥ t− 1

(4.2) ∀t ≥ s ≥ 0 and t+ s ≤ 2, f(t)− f(s) ≤ t− s
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(4.3) ∀t ≥ s ≥ 1, f(t)− f(s) ≥ t− s

Proof. Consider g(t) = f(t)− (t− 1), then

g′(t) = log(t) and g′′(t) = 1/t > 0

This implies g is convex with g′(1) = 0 and g(1) = 0 and finishes the proof of (4.1)
For (4.2), we fix s ≥ 0 and reset g(t) for t ≥ s by

g(t) = f(t)− f(s)− (t− s)f ′
(
t+ s

2

)
= t log(t)− s log(s)− (t− s)

(
1 + log

(
t+ s

2

))
We take the first and second derivatives of g and get

g′(t) = log
(

2t
t+ s

)
− t− s

t+ s

and

g′′(t) =
s(s− t)
t(t+ s)2

So g is concave and g′(s) = 0 implies g(t) ≤ g(s) = 0, which means

f(t)− f(s) ≤ (t− s)
(

1 + log
(
t+ s

2

))
By assumption t+ s ≤ 2 and so (4.2) is proved.
Apply Mean Value Theorem on f , we get for any t ≥ s, there exists a number
c(s, t) ∈ (s, t) such that

f(t)− f(s) = (t− s)f ′(c(s, t))

If s ≥ 1, f ′(c(s, t)) ≥ 1 and (4.3) is proved. �

Theorem 6. The logarithmic Sobolev constant of the simple random walk on 5-
cycle satisfies α = λ/2.

Before proving the theorem, we first prove the following lemmas. They give some
properties that a non-constant minimizer of the 5-cycle must satisfy if α < λ/2.

Lemma 5. Let u = (a, b, c, d, e) be a non-constant positive vector satisfying a ≥
b ≥ c ≥ d ≥ e ≥ 0 and no three consecutive numbers are the same. Let f(x) be
defined as in Lemma 4.Suppose they satisfy the following system of equations

(1) 2a− (b+ c) = 4αf(a),

(2) 2b− (a+ d) = 4αf(b),

(3) 2c− (a+ e) = 4αf(c),

(4) 2d− (c+ e) = 4αf(d),

(5) 2e− (c+ d) = 4αf(e),

(6) a2 + b2 + c2 + d2 + e2 = 5
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where α is a constant. If α < 1
2 (1− cos(2π/5)), then

(5.1) b > 1;

(5.2) 2c > a+ e > 2 > b+ d, if c > 1;

(5.3) d ≤ 1;

Proof. First, observe that 1
2 (1 − cos(2π/5)) is the smaller root of the equation

g(t) = 0, where g(t) = 16t2− 20t+ 5 = (2− 4t)(3− 4t)− 1. It is easy to verify that
g(α) > 0.

To show (5.1), we suppose b ≤ 1. By (4.1), the RHS of (2) is bounded below
by 4α(b− 1) and the LHS can be rewritten as 2(b− 1)− (a+ d− 2). This implies
(2− 4α)(b− 1) ≥ (a+ d− 2). Since α < 1/2 and b ≤ 1, we have a+ d ≤ 2, which
implies c+ e ≤ 2. Subtract (4) from (1) and apply (4.2), we have

2(a− d)− (c− e) ≤ 4α(a− d)

or equivalently

(7) (2− 4α)(a− d)− (c− e) ≤ 0.

Similarly subtracting (5) from (3) and apply (4.2) will produce

(8) (3− 4α)(c− e)− (a− d) ≤ 0.

The contradiction comes from adding (7)× (3− 4α) + (8), which gives
g(α)(a− d) ≤ 0 or g(α) < 0.

For (5.2), suppose c > 1. By (3), a + e < 2c. Subtract (2) from (1) and apply
(4.3), we get

(9) (3− 4α)(a− b)− (c− d) ≥ 0.

Similarly, subtract (5) from (4) and apply (4.2), we get

(10) (3− 4α)(e− d)− (c− b) ≥ 0.

Now add up (3),(9),(10) produces

(2− 4α)(a+ e− b− d) ≥ 4αc log(c) ≥ 0.

Hence, a+ e ≥ b+ d. Suppose a+ e ≤ 2, then apply (4.2) to (1)− (5) and (2)− (4)
respectively will produce

(11) (2− 4α)(a− e)− (b− d) ≤ 0,

(12) (3− 4α)(b− d)− (a− e) ≤ 0.

(3 − 4α) × (11) − (12), we get g(α)(a − e) ≤ 0, which gives g(α) ≤ 0. The last
inequality comes from the fact that a+ b+ c+ d+ e ≤ 5

For (5.3), if c > 1, by (5.2) we have b + d < 2. But b > 1 by (5.1), so d < 1. If
c ≤ 1, the result is trivial. �

Remark 1. If α < λ/2, a positive minimizer u = (a, b, c, d, e) of the 5-cycle with
||u||2 = 1 must satisfy a ≥ b ≥ c ≥ d ≥ e. The arrangement of (a, b, c, d, e) is
illustrated in the picture below.
Recall

α = inf
{
E(f, f)
L(f)

;L(f) 6= 0
}
.
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If u is a minimizer of the 5-cycle with ||u||2 = 1, we have

α =
(a− b)2 + (a− c)2 + (b− d)2 + (c− e)2 + (d− e)2

a2 log a2 + b2 log b2 + c2 log c2 + d2 log d2 + e2 log e2
.

Notice the relative order of a, b, c, d, e does not change the value of the denominator,
and without loss of generality, we can assume a is the largest. By symmetry, suppose
b is the smallest. It is not difficult to see that the order a ≥ c ≥ e ≥ d ≥ b will
minimize the numerator. However, by swapping b and e, the difference in the
numerator is

(a− b)2 + (c− e)2 − (a− e)2 − (c− b)2.
Using the fact that

x+ y = x′ + y′ and |x− y| > |x′ − y′| ⇒ x2 + y2 > x′2 + y′2

We conclude that (a−b)2 +(c−e)2− (a−e)2 +(c−b)2 > 0, and so b can not be the
smallest. Therefore, by symmetry, we may assume e is the smallest and conclude
a ≥ c ≥ e and a ≥ b ≥ d ≥ e. Suppose d > c, by swapping d and c, the difference
we get is (a − c)2 + (b − d)2 − (a − d)2 − (b − c)2. If a ≥ b ≥ d ≥ c, this will be
positive, meaning the α we get is not optimal. If b < c, by swapping b and c, the
difference we get is (b− d)2 +(c− e)2− (c− d)2− (b− e)2, which is clearly positive.
Therefore, we must have a ≥ b ≥ c ≥ d ≥ e.

r
r

r
r
r Z

Z
Z
Z

�
�
�
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```
``
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b

c

d

e

Lemma 6. Let (a, b, c, d, e) be a vector satisfying a2 + b2 + c2 + d2 + e2 = 5 and
0 ≤ e ≤ d ≤ c ≤ b ≤ a. Suppose they satisfy the following system of equations

(13) g(a) = b+ c,

(14) g(b) = a+ d,

(15) g(c) = a+ e,

(16) g(d) = b+ e,

(17) g(e) = c+ d,

where g(x) = 2x− 4αx log x, α is a constant. If α < 1
2 (1− cos(2π/5)), then d = e.

In other words, if α < λ/2, the minimizer of the 5-cycle is symmetric.

Proof. By equations (15) and (17), we get a = g(g(e) − d) − e. Similarly, by
equations (14) and (16), we get a = g(g(d)− e)− d. If d, e solves the above system,
we must have g(g(e)− d)− g(g(d)− e) = e− d. By (5.3) in the previous lemma, it
suffices to consider d ≤ 1.
For any fixed d ≤ 1, define

g1 : [0, d]
⋂
{x|g(x) ≥ d} → R



13

by
g1(e) = g(g(e)− d)− g(g(d)− e).

The idea of the proof is to show that for any fixed d ≤ 1, g1(e) and g2(e) = e − d
intersect only at the point e = d.
To achieve this goal, we utilize the convexity of g1 and g2. If we can show that for
any fixed d ≤ 1, g1 is concave with slope greater than 1, it follows that g1 and g2
intersect only at the point e = d. Taking derivatives of g1, we have

g′1(e) = g′(g(e)− d)× g′(e) + g′(g(d)− e)
g′′1 (e) = g′(g(e)− d)× g′′(e) + g′′(g(e)− d)× g′(e)2 − g′′(g(d)− e)
g′′′1 (e) = g′(g(e)− d)× g′′′(e) + g′′(g(e)− d)× g′(e)× g′′(e)

+g′′(g(e)− d)× 2g′(e)× g′′(e) + g′′′(g(e)− d)× g′(e)3

+g′′′(g(d)− e).

Notice g(e)− d ≤ g(d)− d ≤ 4α exp(1/4α− 1) and g′(x) = 2− 4α− 4α log x, so

g′(g(e)− d) ≥ 2− 4α− 4α(log(4α) + 1/4α− 1)
= 1− 4α log(4α)
≥ 1− 2(1− cos(2π/5)) log(2(1− cos(2π/5))) > 0.

Combing the facts that g′′(x) = −4α/x < 0 and g′′′(x) = 4α/x2 > 0, we have
g′′′1 > 0. Therefore, if we can show g′′1 (d) < 0, g1 will be concave.
We define h(d) = g′′1 (d) = g′(g(d)−d)× g′′(d)+ g′′(g(d)−d)× g′(d)2− g′′(g(d)−d)

h′(d) = g′′(g(d)− d)× [g′(d)− 1]× g′′(d) + g′(g(d)− d)× g′′′(d)
+g′′′(g(d)− d)× [g′(d)− 1′ × g′(d)2 + g′′(g(d)− d)× 2g′(d)× g′′(d)
−g′′′(g(d)− d)× [g′(d)− 1]

= [g′(d)− 1]× g′′′(g(d)− d)× (g′(d)2 − 1)
+g′′(g(d)− d)× g′′(d)× [3g′(d)− 1] + g′′′(d)g′(g(d)− d)

= [g′(d)− 1]2 × g′′′(g(d)− d)× [g′(d) + 1]
+g′′(g(d)− d)× g′′(d)× [3g′(d)− 1] + g′′′(d)g′(g(d)− d).

Since g′(d) ≥ g′(1) = 2−4α > 2−2(1−cos(2π/5)), 3g′(d)−1 > 0, and so h′(d) > 0
for all d ≤ 1.

h(1) = (2− 4α)(−2α) + (−2α)(2− 4α)2 + 2α
= −2α[(2− 4α)(3− 4α)− 1] < 0.

So we conclude that h(d) = g′′1 (d) < 0 for all d ≤ 1. Therefore, for each fixed d ≤ 1,
the function g1 defined is concave.
Our proof of the lemma will be complete once we show that for any fixed d ≤ 1,
g′1(d) > 1. Define h1(d) = g′1(d) = g′(g(d)− d)× [1 + g′(d)]. Then
h′1(d) = g′′(g(d)− d)× [g′(d)2 − 1] + g′′(d)× g′(g(d)− d).

If g′(d) ≥ 1, h′1(d) < 0.
If g′(d) < 1, since g(d) − d ≥ d if d ≤ 1, h′1(d) ≤ g′′(d)[g′(g(d) − d) + g′(d)2 − 1].
Define h2(d) = g′(g(d)− d) + g′(d)2 − 1,

h′2(d) = g′′(g(d)− d)× [g′(d)− 1] + 2× g′(d)× g′′(d)
≤ g′′(d)× [3g′(d)− 1] < 0.
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Notice h2(1) > 0, so h2(d) > 0 if d ≤ 1, which implies h′1(d) < 0 if d ≤ 1. Therefore,
h1(d) > h1(1) > 1 if d ≤ 1. This shows g′1(d) > 1 for any fixed d ≤ 1, proving the
fact that g1 and g2 intersect only at e = d. Using (16) and (17), we conclude that
a minimizer must be symmetric. �

Lemma 7. Let K : {1, 2, 3} × {1, 2, 3} be the Markov kernel defined by

K =

 0 1 0
.5 0 .5
0 .5 .5


with stationary measure π = (1/5, 2/5, 2/5). The log Sobolev constant α satisfies

α = λ/2 =
1
2
(1− cos(2π/5))

Remark 2. Notice Lemma 7 is a corollary of Theorem 6 by Lemma 2. With the
result of Lemma 6, Lemma 7 is equivalent to Theorem 6. The collapse of the 5-cycle
to the 3-point stick is illustrated in the figure below.

Figure 1. Collapse of 5-cycle to the 3-point stick
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Proof. Suppose the log Sobolev constant α < 1
2 (1− cos( 2π

5 )). By Theorem 3, there
exists a positive non-constant vector u = (u1, u2, u3) that satisfies (3.1). We may
assume without loss of generality that u2

1+2u2
2+2u2

3 = 5 since E(kf, kf) = k2E(f, f)
and L(kf) = k2L(f) so the ratio is not changed. Equation (3.1) is then equivalent
to the following

2αu1 log(u1) = u1 − u2

4αu2 log(u2) = 2u2 − u1 − u3

4αu3 log(u3) = u3 − u2

Define
f(x, α) = x− 2αx log(x).
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It is easy to check that if (u1, u2, u3) is a non-constant vector satisfying the above
system, then u2 = f(u1, α) and u3 = 2f(f(u1, α), α)− u1, so there exists a u1 6= 1
such that

F (u1, α) = u2
1 + 2[f(u1, α)]2 + 2[2f(f(u1, α), α)− u1]2 − 5 = 0.

By Lemma 6, since the minimizer is symmetric, if u = (u1, u2, u3) is a minimizer
for the chain above, then ũ = (u1, u2, u2, u3, u3) will be a minimizer for the simple
random walk on 5-cycle. If u1 < 1, then u1 < u2 = f(u1, α) < 1 and so u3 must
be greater than 1 by the normalization constraint. But Lemma 6 tells us that the
two smallest entries of the minimizer of the 5-cycle are equal, i.e. u1 = u2 which
implies u1 = u2 = u3 = 1 by the minimizer equation. Therefore, it suffice to
consider u1 > 1.
The key of the proof is to recognize that for any fixed u1, F (u1, α) is increasing
decreasing in α if 1 < u1 < 1.42. Therefore, we can pick F (u1,

1
2 [1 − cos(2π/5)])

as a reference function and if u1 = 1 is the only root of F (u1,
1
2 [1− cos(2π/5)]) on

(1, 1.42), we may conclude that no non-constant minimizer exists, and so α = λ/2.
To see F is decreasing in α for u1 > 1, take the first partial derivative of F with
respect to α,

Fα(u1, α) = 4f(u1, α)× fα(u1, α)
+4[2f(f(u1, α), α)− u1]× 2fα(f(u1, α), α)× [fα(u1, α) + 1].

Observe that for any fixed α, the set of u1 that gives u2, u3 > 0 is an interval. On
this interval, we have

Fα(u1, α) = 4u2 × fα(u1, α) + 4u3 × 2fα(u2, α)× [fα(u1, α) + 1].

Since fα(x, α) = −2x log x, the first term in the sum is negative if u1 > 1.
fα(u2, α) < 0 as u1 > 1 implies u2 > 1. Since we consider only u1 < 1.42, it
is easy to check that fα(u1, α) + 1 > 0 on this interval and so the second term is
also negative.
From now on, I will denote f(x, 1

2 [1− cos(2π/5)]) by f(x).
The first and second derivatives of F (u1,

1
2 (1− cos(2π/5))) are

F ′ = 2u1 + 4f(u1)f ′(u1) + 4(2f(f(u1))− u1)(2f ′(f(u1))f ′(u1)− 1)
F ′′ = 2 + 4f ′(u1)2 + 4f(u1)f ′′(u1) + 4(2f ′(f(u1))f ′(u1)− 1)2

+4(2f(f(u1))− u1)(2f ′′(u1)f ′(f(u1)) + 2f ′′(f(u1))f ′(u1)2).

When evaluated at 1,

F ′ = 2[(3− 4α)(2− 4α)− 1] = 0
F ′′ = 2[(3− 4α)(2− 4α)− 1](8α2 − 8α+ 1) = 0.

since α = (1/2)(1− cos(2π/5)) is a root of (3− 4α)(2− 4α)− 1.
The third derivative of F is

F ′′′ = 12f ′(u1)f ′′(u1) + 4f(u1)f ′′′(u1) + h(u1)

where

h(u1) = 4f(u1)f ′′′(u1)
+12[2f ′(f(u1))f ′(u1)− 1][2f ′′(f(u1))f ′(u1)2 + 2f ′(f(u1))f ′′(u1)]
+4[2f(f(u1))− u1][2f ′′′(u1)f ′(f(u1)) + 2f ′′(u1)f ′′(f(u1))f ′(u1)

+2f ′′′(f(u1))f ′(u1)3 + 4f ′′(f(u1))f ′(u1)f ′′(u1)].
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Using the facts that f(u1) > u1 if u1 > 1, f ′ is decreasing, f ′′ is negative and f ′′′

is positive, one can see that h is positive on the interval (1, 1.42).
To see F ′′′ > 0 on (1,1.42), notice

12f ′(u1)f ′′(u1) + 4f(u1)f ′′′(u1)

= 12(1− 2α− 2α log u1)
−2α
u1

+ 4(u1 − 2αu1 log u1)
2α
u2

1

=
8α
u1

[1− 2α log u1 − (3− 6α− 6α log u1)]

=
8α
u1

(−2 + 6α+ 4α log u1) > 0

when α = 1
2 (1− cos(2π/5)).

Therefore, F (u1,
1
2 [1− cos(2π/5)]) > 0 on (1, 1.42) by the convexity of F. Com-

bining all the results, for any fixed α < 1
2 (1 − cos(2π/5)), the only solution to

F (u1, α) = 0 is u1 = 1, thus the lemma is proved. �

Remark 3. In the search of a minimizer, we only need to consider u1 < 1.42. Recall
if u = (u1, u2, u3) is a minimizer for the above chain, ũ = (u1, u2, u2, u3, u3) is a
minimizer for the 5-cycle. By (5.1) in Lemma 5, we have u2 > 1 and by (5.3) in
Lemma 5 we have u1 + u3 > 2. Therefore, if u1 > 1.42, u2

1 + 2u2
3 > 2.6892 and

u2 = f(u1) > 1.0759, so u2
1 + 2u2

2 + 2u2
3 > 5

7. Some other examples of 3 point chain

Theorem 7. For 0 ≤ p < 1, let Kp : {1, 2, 3} × {1, 2, 3} be the Markov kernel
defined by

Kp =

 p 1− p 0
.5 0 .5
0 1− p p


with stationary distribution

πp = (
1

4− 2p
,
2− 2p
4− 2p

,
1

4− 2p
).

Then αp = λp/2.

Figure 2. A family of 3 point chain with α = λ/2
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Proof. We proceed by contradiction. Observe that λp = 1−p. Suppose αp < λp/2.
By Theorem 3, there exists a non-constant positive u = (u1, u2, u3) that satisfies
(3.1). By symmetry, we may assume u1 ≥ u3. Notice if u is a minimizer, ku is also
a minimizer for all k > 0. Therefore, we may assume

(7-1) u2
1 + (2− 2p)u2

2 + u2
3 = 4− 2p

and (3.1) is equivalent to

(7-2)
2αp

1− p
f(u1) = u1 − u2

(7-3) 4αpf(u2) = 2u2 − u1 − u3

(7-4)
2αp

1− p
f(u3) = u3 − u2

where f(t) = t log t is the function used in Lemma 4. Subtract (7-4) from (7-2) and
rearrange the terms, we get

f(u1)− f(u3) =
1− p

2αp
(u1 − u3) > u1 − u3

since we assume 2αp < λp = 1−p. By (4.2) in Lemma 4, we get u1 +u3 > 2. Since
u1 + u3 > 2 implies u2

1 + u2
3 > 2, from (7-1) we get u2 < 1.

By considering the combination (7-2)/u1+(6-4)/u3-(6-3)/u2, we obtain
2α

1− p
log(u1u3)− 4α log(u2) =

u1

u2
− u2

u1
+
u3

u2
− u2

u3
.

Rearranging the terms yields

(7-5)
4αp
1− p

log(u2) =
(
u1

u2
− u2

u1
− 2α

1− p
log

u1

u2

)
−

(
u2

u3
− u3

u2
− 2α

1− p
log

u2

u3

)
.

Define h(t) = t− t−1 − k log(t), and note that

h′(t) =
(t− 1)2

t2
+

2− k

t
> 0 if k < 2

The LHS of (7-5) is always negative since u2 < 1. By assumption,2α/(1 − p) <
1 < 2, so h(u1/u2) − h(u2/u3) < 0, which implies u1/u2 < u2/u3. This means
u1u3 < u2

2 < 1. Using this relation in (7-1) yields

4− 2p > u2
1 + (2− 2p)u1u3 + u2

3

> (u1 + u3)2 − 2p(u1u3)
> 4− 2p(u1u3).

Rearranging the terms, we get u1u3 > 1, a contradiction. �

Theorem 8. For 0 ≤ p < 1, let Kp : {0, 1, 2} × {0, 1, 2} be the Markov kernel
defined by

Kp =

 q p 0
q 0 p
0 q p


with stationary distribution

πp =
(

1
1 + p/q + (p/q)2

,
p/q

1 + p/q + (p/q)2
,

(p/q)2

1 + p/q + (p/q)2

)
,



18

p+ q = 1. Then

αp =
p− q

2(log p− log q)
with minimizer

u = (p/q, 1, q/p).

Figure 3. A family of 3 point chain with α known and not equal to λ/2
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Proof. We compare this chain with another 3 point chain,

K̃p =

 q p 0
q/2 1/2 p/2
0 q p


with stationary distribution

π̃p =
(

1
1 + 2p/q + (p/q)2

,
2p/q

1 + 2p/q + (p/q)2
,

(p/q)2

1 + 2p/q + (p/q)2

)
,

The Dirichlet form associated with (K̃, π̃) is

Ẽp(u, u) =
(u1 − u2)2p+ (u2 − u3)2p2/q

1 + 2p/q + (p/q)2
.

The Dirichlet form associated with (K,π) is

Ep(u, u) =
(u1 − u2)2p+ (u2 − u3)2p2/q

1 + p/q + (p/q)2
.

It is easy to see that

Ẽp ≤
1 + p/q + (p/q)2

1 + 2p/q + (p/q)2
Ep and

1 + p/q + (p/q)2

1 + 2p/q + (p/q)2
πp ≤ π̃p.

By Lemma 3, αp ≥ α̃p.
Next, consider the product chain of K ′

p, where K ′
p is the asymmetric two point

chain in Theorem 4 on {0, 1}2, with µ = (1/2, 1/2). Define

p : {0, 1}2 → {0, 1, 2}
by

p(x) = |x|.
It follows from Lemma 2 that

α̃p ≥
p− q

2(log p− log q)
.
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Therefore,

αp ≥
p− q

2(log p− log q)
.

By letting u = (p/q, 1, q/p), we get

E(u, u)
L(u)

=
p− q

2(log p− log q)
.

Thus,
p− q

2(log p− log q)
≤ α̃p ≤ αp ≤

p− q

2(log p− log q)
,

proving the theorem. �

Proposition 1. Fix 0 ≤ p < 1.Let K : {1, 2, 3} × {1, 2, 3} be the Markov kernel
defined by

Kp =

 0 1 0
.5 0 .5
0 1− p p


with stationary measure

πp = (
1− p

4− 3p
,
2− 2p
4− 3p

,
1

4− 3p
).

Then the log Sobolev constant αp satisfies

αp = λp/2

only when p = 0 or p = 1/2.

Figure 4. A family of 3 point chain with α < λ/2 except when p = 0 or p = 1/2

r r r������ ���� ��� �

- -
?p

1/2 1− p

1 1/2

Proof. We utilize the result of Corollary 1. The spectral gap λ is

λ(Kp) =
p− 1 +

√
1 + p2

2
with eigenfunction

ψ = (1,
p− 1 +

√
1 + p2

2
, (p− 1)(p+

√
1 + p2)).

E(ψ3) =
p(1− p)(p− 1/2)[3− 3p+ 6p2 − 4p3 +

√
1 + p2(−2 + 12p− 8p2)]

4− 3p
.
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Notice 3− 3p+ 6p2 − 4p3 is strictly decreasing in p and
√

1 + p2(−2 + 12p− 8p2)
is strictly increasing on (0, .75) and not less than 2 on [.75, 1). Combining these
observations, it is easy to see that

3− 3p+ 6p2 − 4p3 +
√

1 + p2(−2 + 12p− 8p2) > 0 on (0, 1).

Therefore, E(ψ3) 6= 0 unless p = 0 or p = 1/2. By Corollary 1, we have αp < λp

for p 6= 0, 1/2.
The equality for p = 0, 1/2 is proved in Lemma 7 and Theorem 7. �
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