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1. Introduction

For an n-dimensional Schrödinger operator

(1.1) L =

(
∂

∂x1

)2

+ ...+

(
∂

∂xn

)2

− u(x)

with x = (x1, · · · , xn) and locally smooth potential u(x), we define its heat kernel Φ(x, ξ, t)
to be the fundamental solution of the heat equation

(1.2)

(
∂

∂t
− L

)
Φ(x, ξ, t) = 0 , Φ(x, ξ, 0) = δ(x− ξ) .

It is well-known (see e.g. [12, 23]) that Φ(x, ξ, t) has an asymptotic expansion of the form

(1.3) Φ(x, ξ, t) ∼ e−
|x−ξ|2

4t

(4πt)
n
2

(
1 +

∞∑
ν=1

Uν(x, ξ)t
ν

)
as t→ 0+ .

In can be directly shown from (1.2) that the coefficients Uν of this expansion satisfy the
following transport equations

(1.4) (x− ξ, ∂x)Uν(x, ξ) + ν Uν(x, ξ) = L[Uν−1(·, ξ)](x) , ν = 1, 2, ...

with a convention U0 ≡ 1. It turns out that the differential-recurrence system (1.4) has a
unique solution if one requires that Uν(x, ξ) is bounded as x → ξ. Following [14], we will
refer to the heat kernel coefficients Uν(x, ξ) as the Hadamard coefficients of the operator L.

The problem of calculating the Hadamard coefficients has appeared in many different
contexts in mathematics. For example, the heat kernel expansion of the Laplacian on Rie-
mannian manifolds is one of the main objects of study in Spectral Geometry. In this paper
we consider the Schrödinger operator L on flat space, in which case the Hadamard coefficients
are directly connected to Huygens’ principle as well as the theory of solitons.

The paper is organized as follows: In section 2, we explain the connection between the
heat kernel expansion and Huygens’ principle. We give examples of non-trivial “Huygens
operators,” including the subject of the paper, the operator (2.12). We also state the main
result of the paper, which is an explicit formula for the Hadamard coefficients of the operator
(2.12). In section 3, we describe Darboux transformations and their relationship with the
Hadamard coefficients. This is used to show that there are a finite number of non-zero
Hadamard coefficients of (2.12) and is used later in Section 6 to prove the main result. In
sections 4 and 5, we show how the Hadamard coefficients can be expressed in terms of the
asymptotics of the resolvent kernel. Finally, in section 6, we derive explicit formulas for both
the Hadamard coefficients Uν of (2.12) and the asympotics of its resolvent kernel. While
sections 2-3 are mostly review, sections 4-6 are essentially new results.
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2. Finite Heat Kernel Expansions and Hadamard’s problem

The study of the Hadamard coefficients goes back to Jacques Hadamard in his investigation
of Huygens’ principle [16]. A hyperbolic operator is said to satisfy Huygens’ principle if the
solution of any Cauchy problem at time t depends only on the initial data on a sphere of radius
t centered at the point (x, y, z), i.e. the fundamental solution is supported on the surface
of the characteristic conoid. In his “Lectures on the Cauchy problem”, Jacques Hadamard
proposed the problem of determining all second-order hyperbolic operators with this special
property. He also gave a very useful criterion for a given hyperbolic operator

(2.1) 2n+1 + u(x) =

(
∂

∂t

)2

−
(

∂

∂x1

)2

− ...−
(

∂

∂xn

)2

+ u(x)

to satisfy Huygens’ principle. Explicitly, Hadamard’s criterion states that such an operator
satisfies Huygens’ principle if and only if n > 1 is odd and

(2.2) Up(x, ξ) = 0

where p = (n−1)/2 and the Hadamard coefficients Uν(x, ξ) of the operator (2.1), which appear
in the fundamental solution of the wave equation, are exactly the heat kernel coefficients of
the corresponding Schrödinger operator

(2.3)

(
∂

∂x1

)2

+ ...+

(
∂

∂xn

)2

− u(x).

Note that if Up(x, ξ) = 0, then Uν(x, ξ) = 0 for all ν ≥ p, as is clear from the transport
equation once we require that Uν(x, ξ) is bounded as x→ ξ. Thus, we have the following

Proposition 1. If the hyperbolic operator (2.1) satisfies Huygens’ principle then the operator
(2.3) has a finite heat kernel expansion.

We will refer to an operator (2.3) with property (2.2) as terminating at the level p. Note
that the restriction on p by the dimension n is not essential to the problem of finding Huygens
operators, since given any p-terminating hyperbolic operator L, it is always possible to lift
to a higher-dimensional hyperbolic operator

(2.4) L′ := L−
l∑

i=1

(
∂

∂yi

)2

with the same Uk as L. So in fact, Hadamard’s problem reduces to the problem of finding
terminating operators.

Hadamard conjectured that all second-order hyperbolic operators were equivalent to the
standard d’Alembertian up to change of variables. This conjecture turned out to be false,
with the first class of non-trivial Huygens operators being given by K. Stellmacher and J.
Lagnese ([19, 20, 21, 26, 27]). This class of operators had the form

(2.5) 2n+1 + u(x)
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where u(x) is a rational function of one variable defined by

(2.6) u(z) = 2
d2

dz2
logPk(z)

and the sequence of polynomials Pk(z) is defined by the differential-recurrence relation

(2.7) P ′
k+1(z)Pk−1(z)− P ′

k−1(z)Pk+1(z) = (2k + 1)P 2
k (z)

starting from P0 = 1, P1 = z. In fact, it was proved that all operators of the form (2.5) with
potential u(x) depending on one variable which satisfied Huygens’ principle were of this form
([20]). The polynomials Pk(z) first appeared in the works of Burchnall and Chaundy ([11])
and were discovered independently in the context of Hadamard’s problem by Stellmacher
and Lagnese ([21]) and in the context of integrable systems by Adler, Airault, McKean, and
Moser [1, 2].

Another class of Huygens’ operators in Minkowski space was discovered by Y. Berest and A.
Veselov ([8, 9]) in which the potential u(x) depends on several variables. For a fixed Coxeter
group W with root system R and a W -invariant, integer-valued function m : R → Z≥0, we
can associate a “Calogero-Moser” potential

(2.8) u(x) =
∑

α∈R+

mα(mα + 1)(α, α)

(α, x)2
.

In ([8]), it was shown that the hyperbolic operator

(2.9) 2n+1 + u(x)

satisfies Huygens’ principle provided that n is odd and n ≥ 3 + 2
∑

α∈R+
mα.

Finally, a third class of hyperbolic operators satisfying Huygens’ principle was discovered
by Y. Berest and I. Loutsenko ([6]) in which case the potential u(x) depends on two variables.
Given a strictly increasing sequence of positive integers

(2.10) 0 ≤ k1 < k2 < · · · < km−1 < km = N

we define a sequence of functions χj(ϕ) by

(2.11) χj(ϕ) := cos(kjϕ+ ϕj)

where ϕj ∈ R are arbitrary phases. Then the operator

(2.12) L := 2n+1 −
2

r2

(
∂

∂ϕ

)2

logW [χ1(ϕ), χ2(ϕ), ..., χm(ϕ)]

satisfies Huygens’ principle provided that n ≥ 3 is odd and

(2.13) N ≤ n− 3

2

Here (r, ϕ) denote polar coordinates in the Euclidean 2-plane (x1, x2) andW [χ1(ϕ), χ2(ϕ), ..., χm(ϕ)]
is the Wronskian of the functions χ1(ϕ), χ2(ϕ), ..., χm(ϕ). These operators are an extension
of the operators (2.9) with potentials (2.8) corresponding to the dihedral group I2(q) (see
[4, 6])

In fact, it was shown ([4]) that any linear, second-order, normal hyperbolic operator

L = 2n+1 + u(x1, x2)

with locally analytic potential u(x1, x2) homogeneous of degree -2 that satisfies Huygens’
principle must be of the form (2.12). The aim of this paper is to complete the investigation
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of the operators (2.12) by computing explicitly their Hadamard coefficients: to be precise,
our main result can be stated as follows.

Theorem 1. The Hadamard coefficients of the operator (2.12) can be presented in simple
closed form in terms of polar coordinates:

U0 = 1

Uν =
(−2)ν

(rρ)ν

1

W(ϕ)W(φ)

m∑
i=1

ciWi(ϕ)Wi(φ)T
(ν)
ki

(cos(ϕ− φ)) , ν ≥ 1 ,(2.14)

where ci and Wi are defined, respectively, as

(2.15) ci :=

 1 if m = 1∏m
j=1
j 6=i

(k2
i − k2

j ) if m > 1

Wi := W [χ1, . . . , χi−1, χi+1, ..., χm]

and TN(z) := cos(N arccos(z)), z ∈ [−1, 1], is the N th Chebyshev polynomial, with T
(ν)
N (z)

its derivative of order ν with respect to z.

3. Darboux transformations

Both the potentials in (2.6) and (2.12) can be obtained from ∂2 by a sequence of classical
Darboux transformations. By Darboux transformation we mean the following: Starting with
a Sturm-Liouville operator

(3.1) L0 := − ∂2

∂ϕ2
+ v0(ϕ)

we fix an eigenfunction Ψ1(ϕ) with eigenvalue λ1. This gives rise to a factorization

(3.2) L0 − λ1 = −
(
∂

∂ϕ
+ f1(ϕ)

)(
∂

∂ϕ
− f1(ϕ)

)
where f1(ϕ) is the logarithmic derivative of Ψ1(ϕ), i.e.

(3.3) f1(ϕ) =
∂

∂ϕ
log Ψ1(ϕ) =

Ψ′
1(ϕ)

Ψ1(ϕ)

We then define

(3.4) A0 :=
∂

∂ϕ
− f1(ϕ)

and

(3.5) A∗
0 := − ∂

∂ϕ
− f1(ϕ).

So, writing

(3.6) L0 = λ1 + A∗
0A0,

we then define the Darboux transformation of L0 with respect to λ0 as

(3.7) L1 := λ1 + A0A
∗
0.
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This new operator is of the form

(3.8) L1 = − ∂2

∂ϕ2
+ v1(ϕ)

where

(3.9) v1(ϕ) = v0(ϕ)− 2

(
∂

∂ϕ

)2

log Ψ1(ϕ)

Given another eigenfunction Ψ(ϕ) of L0 with eigenvalue λ 6= λ1, the function

(3.10) A0[Ψ(ϕ)] =
W [Ψ1,Ψ]

Ψ1

is an eigenfunction of L1 with the same eigenvalue. This is clear from the relation

(3.11) L1 ◦ A0 = A0 ◦ L0.

We see therefore that the Darboux transformation L1 of L0 with respect to λ1 has the same
spectrum as L0, with the exception of the point λ1. Fixing another eigenfunction Ψ2(ϕ) of L0

with eigenvalue λ2 6= λ1, we get an eigenfunction of L1 which we can use to apply a Darboux
transformation to L1. Continuing this process N times, we end up with an operator

(3.12) LN = − ∂2

∂ϕ2
+ vN(ϕ)

with vN(ϕ) related to v0(ϕ) by the equation

(3.13) vN(ϕ) = v0(ϕ)− 2

(
∂

∂ϕ

)2

logW [Ψ1(ϕ),Ψ2(ϕ), · · ·ΨN(ϕ)].

L0 and LN are again intertwined by the relation

(3.14) LN ◦ (AN−1 ◦ · · ·A1 ◦ A0) = (AN−1 ◦ · · ·A1 ◦ A0) ◦ L0.

Here the operators Ai take the form

(3.15) Ai :=
∂

∂ϕ
− fi+1(ϕ)

where

(3.16) fi+1(ϕ) =
∂

∂ϕ
log

W [Ψ1(ϕ), · · · ,Ψi+1(ϕ)]

W [Ψ1(ϕ), · · · ,Ψi(ϕ)]

and an arbitrary eigenfunction Ψ(ϕ) of L0 of eigenvalue λ 6= λ1, λ2, · · ·λn is transformed to
the eigenfunction

(3.17) (AN−1 ◦ · · ·A1 ◦ A0)Ψ(ϕ) =
W [Ψ1(ϕ), · · · ,ΨN(ϕ),Ψ(ϕ)]

W [Ψ1(ϕ), · · · ,ΨN(ϕ)]

of LN of eigenvalue λ.
In suitably chosen cylindrical coordinates, the operator (2.12) can be written explicitly as

follows

(3.18) L = ∆n−2 +
( ∂

∂r

)2

+
1

r

∂

∂r
− 1

r2
L
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where (r, ϕ) are the polar coordinates in the corresponding Euclidean plane and

(3.19) L := −
( ∂

∂ϕ

)2

+ v(ϕ)

is a one-dimensional Schrödinger operator with v(ϕ) = u(cosϕ, sinϕ). The operator (3.19)

is then the N -th Darboux transformation of the operator −
(

∂
∂ϕ

)2

obtained by taking (2.11)

as our eigenfunctions. Moreover, the Hadamard coefficients have the form

(3.20) Uν(x, ξ) =
1

(rρ)ν
σν(ϕ, φ) , ν = 0, 1, 2, ... ,

where (ρ, φ) is the polar coordinates of ξ. The above transport equation (1.4) in this case is
equivalent to the system of equations ([4, Lemma 3.1])

sin(ϕ− φ)
∂

∂ϕ
σν(ϕ, φ) + ν cos(ϕ− φ)σν(ϕ, φ)(3.21)

= −(L− (ν − 1)2) [σν−1(·, φ)](ϕ) , ν ≥ 1 ,

which has a unique solution (σ0, σ1, σ2, ...) such that σ0(ϕ, φ) ≡ 1 and σν(ϕ, φ) are bounded as
ϕ→ φ. For convenience, we will also refer to the functions σν(ϕ, φ) as Hadamard coefficients.

We now state a proposition concerning Hadamard coefficients and the Darboux transfor-
mation.

Proposition 2. Let L0 and L1 be two operators where L1 is obtained from L0 by a single
Darboux transformation as in (3.6) and (3.7). Let (σ0

ν) and (σ1
ν) be the sequences of Hadamard

coefficients of L0 and L1, respectively. Then the following identity holds:

σ1
ν+1(ϕ, φ) +

2

sin(ϕ− φ)
A∗

0[σ
1
ν(·, φ)](ϕ)(3.22)

= σ0
ν+1(ϕ, φ) +

2

sin(ϕ− φ)
A0[σ

0
ν(ϕ, ·)](φ)

where A0 and A∗
0 are as in (3.6) and (3.7).

This result is essentially due to Berest ([4, 6]) and we state it without proof. It is not
hard to see from the proposition that if an operator L̃ can be obtained from −∂2 by a finite
sequence of Darboux transformations, as in the case of (3.19), then it will have a finite number
of non-zero Hadamard coefficients. We will refer back to (3.22) in our proof of Theorem 1 in
Section 6.

Darboux transformations have widely been used as a means to generate non-trivial solu-
tions to linear and non-linear partial differential equations such as the nonlinear Schrödinger
and sine-Gordon equations. Starting with the trivial potential u(z) = 0, Darboux trans-
formations can be used to produce what are known as “finite-gap” solutions to the KdV
equation

(3.23) ut = 6uux − uxxx.

Written as a compatibility condition on the system of linear partial differential equations

(3.24)

{
LΨ = λΨ

Ψt = (L3/2)+Ψ
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it is easy to verify that any Darboux transformation L→ L̃ and Ψ → Ψ̃ preserves the system
of equations (3.24) and hence (3.23). Both the Stellmacher-Lagnese potentials (2.7) and the
Berest-Loutsenko potentials (2.11) are directly related to “finite-gap” solutions to the KdV
equation. The Stellmacher-Lagnese potentials are known as rational solutions of the KdV
equation decreasing at infinity. Similarly, if we set ϕi = 4k3

i t+ ϕ0i for some ϕ0i ∈ R, then v
satisfies

(3.25) vt = −vϕϕϕ + 6vvϕ

Such a function is known as a singular periodic solution, which is a periodic analogue of the
reflectionless, N-soliton solution.

The Calogero-Moser potentials (2.9) cannot be obtained from classical Darboux transfor-
mations, however the operators (2.9) with these potentials are known to satisfy the inter-
twining identity LD = D2n+1 where

D =
∑
|α|≤N

qα(x)∂α

is a differential operator depending only on the space variables (x1, · · · , xn). Although the
exact relationship between Huygens’ principle and the theory of solitions is unclear, physical
intuition seems to support the view that they are connected in some fundamental way. In
the same sense that soliton equations are the result of a perfect balance between dispersion
and nonlinearity, Huygens operators are deformations of the standard wave operator which
maintain a balance between the diffusive effect of the operator and the reactive effect of
the potential. Following ([5]), we may interpret the Calogero-Moser potentials as a higher-
dimensional analogue of the reflectionless soliton potentials.

4. Asymptotics of the Resolvent Kernel

Let us define a two-index functional sequence {fl,k(ϕ, φ)}l∈Z, k∈Z+ by the recurrence rule

(4.1) fl,0(ϕ, φ) := δl0 , l ∈ Z

(4.2) fl,k(ϕ, φ) := − ∂

∂ϕ
fl,k−1(ϕ, φ)− 1

2
sin(ϕ− φ) fl−1,k−1 , k ≥ 1 ,

where δl0 stands for a standard Kronecker symbol, and we set

(4.3) σ̂k(ϕ, φ) :=
∑
l∈Z

fl,k(ϕ, φ)σl(ϕ, φ) , k ∈ Z+.

It is clear from (4.1)-(4.2) that for any k ∈ Z+ and l > k we have fl,k ≡ 0 and hence the
right-hand of (4.3) is a well-defined expression. In fact, it can be easily shown that (σ̂k)
satisfies the following differential-recurrence relation

(4.4)
∂

∂ϕ
σ̂k(ϕ, φ) =

1

2
L[σ̂k−1(·, φ)](ϕ) , k ≥ 1 .

The condition that σk(ϕ, φ) is bounded as ϕ→ φ is equivalent to conditions

(4.5) σ̂2µ+1(φ, φ) = 0 for all µ = 0, 1, 2, ... ,

(4.6) σ̂2µ(φ, φ) + σ̂′2µ−1(·, φ)(φ) = 0 , µ ≥ 1

and hence σ̂k’s can be uniquely determined from (4.4)-(4.6).
The meaning of σ̂k(ϕ, φ) is clarified in [4]:
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Theorem 2. ([4, Lemma 4.2]) Let ζ ∈ C be a complex parameter, and let G(ϕ, φ) be a
resolvent kernel of the Sturm-Liouville operator L, i.e.,

(4.7) (L+ ζ2) [G(·, φ; ζ)](ϕ) = 0 ,

(4.8) G(ϕ, φ; ζ)|ϕ=φ = 0 ,

(4.9)
∂

∂ϕ
[G(ϕ, φ; ζ)]|ϕ=φ = 1 ,

Then the coefficients σ̂k(ϕ, φ) determine the asymptotics of the kernel G(ϕ, φ; ζ) along the
imaginary axis in the complex ζ-plane at +i∞. More precisely, for ζ = im,m ∈ R, we have
an asymptotic expansion

(4.10) G(ϕ, φ; im) ∼ Re

[
eim(ϕ−φ)

∞∑
k=0

σ̂k(ϕ, φ)

(im)k+1

]
We will hereby refer to the sequence (σ̂k) as the asymptotics of the resolvent kernel. Now

we will show how this sequence is related to the Baker -Akhiezer function of the Schrödinger
operator L.

Let W be a pseudo-differential operator such that

(4.11) L = W

(
− ∂2

∂ϕ2

)
W−1 ,

then by definition the Baker-Akhiezer function of L is

(4.12) Ψ(ϕ, z) = W eϕz =

(
1 +

∞∑
i=1

ψiz
−i

)
eϕz .

This function is unique up to multiplication by a series with constant coefficients of the form
1 + c1z

−1 + c2z
−2 + .... Similarly, we can introduce the notion of the adjoint Baker-Akhiezer

function as

(4.13) Ψ∗(ϕ, z) = (W ∗)−1 e−ϕz =

(
1 +

∞∑
i=1

ψ∗i z
−i

)
e−ϕz ,

where W ∗ is the formal adjoint to the operator W . One can easily check that these functions
are solutions of the equation

(4.14) Lψ = −z2 ψ .

Let Wn(ϕ, φ) be coefficients of the product

(4.15) Ψ(ϕ, z)Ψ∗(φ, z) =
∞∑

n=0

Wn(ϕ, φ)z−n e(ϕ−φ)z .

Now, applying L to (4.15) and using (4.14) we get the following system of equations:

LWn−1(ϕ, φ) = 2
∂

∂ϕ
Wn(ϕ, φ) , n ≥ 1 .

Finally, comparing the last equation with (4.4), we obtain
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Lemma 1. Let {σ̂n(ϕ, φ)} be the functional sequence given by (4.4)-(4.6). Then there exists
unique set of constants cm (m = 1, 2, ...) such that

Wk(ϕ, φ) =
∑

m+n=k

cmσ̂n(ϕ, φ) , k ≥ 1 .

In fact, the set of polynomials associated with the quasipolynomials (4.12) forms a principal
ideal in C[z], and if we choose W such that the polynomial part of (4.12) generates this ideal,
then Wk(ϕ, φ) = σ̂k(ϕ, φ) for all k.

In the next theorem we derive the inverse to the formula (4.3):

Theorem 3. The Hadamard’s coefficients of L can be computed as follows

(4.16) σk(ϕ, φ) :=
∑
l∈Z

hl,k(ϕ, φ) σ̂l(ϕ, φ) , k ∈ Z+ ,

where the sequence {hl,k(ϕ, φ)}l∈Z, k∈Z+ is defined by the following rule

(4.17) hl,0(ϕ, φ) := δl0 , l ∈ Z

(4.18) hl,k(ϕ, φ) :=
2

sin(ϕ− φ)

(
∂

∂ϕ
hl,k−1(ϕ, φ)− hl−1,k−1(ϕ, φ)

)
, k ≥ 1 .

Proof. We make the ansatz

(4.19) σk(ϕ, φ) :=
k∑

l=0

h̃l,k(ϕ, φ) σ̂l(ϕ, φ) , k ∈ Z+ ,

and substitute (4.19) into (3.21).

Using (4.4) and assuming that h̃l,k(ϕ, φ) = 0 for l > k, we obtain, by equating coefficients
of the same σ-terms on both sides of equation (3.21),

h̃k,k(ϕ, φ) =
(−2)k

sink(ϕ− φ)
,

(4.20) h̃l,k(ϕ, φ) =
2

sin(ϕ− φ)

(
∂

∂ϕ
h̃l,k−1(ϕ, φ)− h̃l−1,k−1(ϕ, φ)

)
,

sin(ϕ− φ)
∂

∂ϕ
h̃l,k(ϕ, φ) + k cos(ϕ− φ) h̃l,k(ϕ, φ) =

(
∂2

∂ϕ2
+ (k − 1)2

)
[h̃l,k−1(ϕ, φ)] .

The consistency of the last two relations yields(
∂2

∂ϕ2
− (k − 1)2

)
[h̃l,k−1(ϕ, φ)] + 2(k − 1) cot(ϕ− φ)

∂

∂ϕ
h̃l,k−1(ϕ, φ)(4.21)

=
∂

∂ϕ
h̃l−1,k−1 + 2(k − 1) cot(ϕ− φ) h̃l−1,k−1(ϕ, φ)

To finish the proof of the lemma we only need to check that the sequence defined by the
relations (4.17)-(4.18) will satisfy (4.21). This can easily verified by induction on k. �
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The relation (4.16) gives an explicit formula for computation of Hadamard coefficients,
provided that we have a simple description of coefficients hl,k(ϕ, φ). Using (4.18), one can
easily show that

(4.22) hl,k(ϕ, φ) =


(−2)k

sin2k−l(ϕ−φ)

k−l
2∑

i=0

cil,k sin2i(ϕ− φ)
∣∣ if k − l is even

(−2)k cos(ϕ−φ)

sin2k−l(ϕ−φ)

k−l−1
2∑

i=0

cil,k sin2i(ϕ− φ)
∣∣ if k − l is odd

,

where {cil,k} is a three-index numerical sequence satisfying the corresponding recurrence re-
lation. For instance, when l = 1 we can find from this relation

(4.23) ci1,k =


(−1)i(2k−2i−3)!!

(2i)!!

i∏
j=1

(k − 2j + 1)2
∣∣ if k is odd

(−1)i(2k−2i−3)!!
(2i)!!

i∏
j=1

(k − 2j)2
∣∣ if k is even

.

However, we do not have such simple combinatorial presentation for all {cil,k} and this
leads us to the next section.

5. Generating Functions

We consider the following two generating series defined by the sequences obtained from
{hl,k(ϕ, φ)} by fixing indices l and k respectively:

Hk(ϕ, φ; z) =
∞∑
l=0

hl,k(ϕ, φ)zl .

H̃k(ϕ, φ;λ) =
∞∑

k=0

hl,k(ϕ, φ)λk ,

The following lemma gives a nice description of Hk.

Lemma 2. Let Ω be the linear operator, depending on the parameter z, defined by

Ω :=
2

sin(ϕ− φ)

(
∂

∂ϕ
− z

)
then Hk is a polynomial of order k in z such that

Hk(ϕ, φ; z) = Ωk[1] .

Proof. Multiplying both sides of the defining relation (4.18) by zl and summing up with
respect to l, we obtain

∞∑
l=0

hl,k(ϕ, φ)zl :=
2

sin(ϕ− φ)

(
∂

∂ϕ

∞∑
l=0

hl,k−1(ϕ, φ)zl(5.1)

−z
∞∑
l=0

hl,k−1(ϕ, φ)zl

)
, k ≥ 1 .
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Since hl,k(ϕ, φ) = 0 for l > k, Hk(ϕ, φ; z) is a polynomial with respect to z and the last
equation can be rewritten as

Hk =
2

sin(ϕ− φ)

(
∂

∂ϕ
− z

)
Hk−1 .

In order to complete the proof this lemma we notice that the relation (4.17) implies that
H0 = 1. �

Remark. In the future we will also use the following presentation of the operator Ω

Ω :=
2

sin(ϕ− φ)
· e(ϕ−φ)z ◦ d

dϕ
◦ e−(ϕ−φ)z

Similarly, one can prove

Lemma 3. For the generating function H̃l(ϕ, φ;λ) we have :

(5.2)
∂l

∂ϕl

{
e

cos(ϕ−φ)
2λ H̃l(ϕ, φ;λ)

}
= e

cos(ϕ−φ)
2λ

6. Explicit formulas for Hadamard coefficients

In this section we derive explicit formulas for both the Hadamard coefficients and the
asymptotics of the resolvent kernel of (2.12). A number of papers have been written giving
formulas for the Hadamard coefficients of the one-dimensional Schrödinger operator L, i.e.
solutions Uk(x, ξ) of the one-dimensional transport equation

(x− ξ)∂xUk + k Uk = L[Uk−1(·, ξ)](x)
which are bounded as x→ ξ. These have largely been motivated by the connection between
the Hadamard coefficients and the KdV hierarchy. Since [15] it has been known that the
asymptotics of the resolvent kernel are related to the KdV hierarchy via the identity

(6.1) Kn(u) := [(L
2n−1

2 )+, L] = 2∂xσ̂2n(x, x)

Similarly, it has been known since [22] that the Hadamard coefficients Un of the one-dimensional
Schrödinger operator are related to the KdV hierarchy by

(6.2) Kn(u) := [(L
2n−1

2 )+, L] =
(2n− 1)!!

2n−1
∂xUn(x, x)

Even in the case of the one-dimensional Schrödinger operator, however, these formulas have
had an unwiedly combinatorial structure (see e.g., [25]). In the case that the Schrödinger
operator is known to admit a finite heat kernel expansion one can give more explicit formulas
for its Hadamard coefficients. For one-dimensional operators, such formulas were given in
[18]. To prove Theorem 1 we will use a different approach based on results of [4, 6]. We now
prove a slight modification of Theorem 1:

Proposition 3. The Hadamard coefficients of (2.12) are exactly

σ0 = 1

σν =
(−2)ν

W(ϕ)W(φ)

m∑
i=1

ciWi(ϕ)Wi(φ)T
(ν)
ki

(cos(ϕ− φ)) , ν ≥ 1 ,(6.3)

where ci and Wi are defined are defined as in Theorem 1.
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Proof. We prove this by induction onm and ν. Form = 1, the operator (3.19) corresponding

to (2.12) is obtained from −
(

∂
∂ϕ

)2

by the Darboux transformation (3.6)-(3.7) where

A =
∂

∂ϕ
+ k1 tan(k1ϕ+ ϕ1)

and

A∗ = − ∂

∂ϕ
+ k1 tan(k1ϕ+ ϕ1).

So, applying Proposition 2, by a straightforward calculation we obtain

σ1(ϕ, φ) = −
2T ′k1

(cos(ϕ− φ))

cos(k1ϕ+ ϕ1) cos(k1φ+ ϕ1)

and for ν > 1 we have

σν(ϕ, φ) = − 2

sin(ϕ− φ)
A∗

0[σ
1
ν(·, φ)](ϕ).

It can be directly verified that this is satisfied by

σν(ϕ, φ) =
(−2)νT

(ν)
k1

(cos(ϕ− φ))

cos(k1ϕ+ ϕ1) cos(k1φ+ ϕ1)

From Theorem 3, it is also possible to obtain (6.3) for ν = 1 and arbitrarym. Now we consider
the general case. Let (σN

ν ) be the Hadamard coefficients of an operator L of the form (2.12)

with m = N and let (σN+1
ν ) be the Hadamard coefficients of an operator L̃ obtained from L

by adding χm+1(ϕ) to the sequence of functions (2.11). This implies that the operator (3.19)

corresponding to L̃ can be obtained from the operator (3.19) corresponding to L by a single
Darboux transformation, with

A =
∂

∂ϕ
− ∂

∂ϕ
log

W(ϕ)

WN+1(ϕ)
=

∂

∂ϕ
+
W ′(ϕ)

W(ϕ)
−
W ′

N+1(ϕ)

WN+1(ϕ)

and

A∗ = − ∂

∂ϕ
− ∂

∂ϕ
log

W (ϕ)

WN+1(ϕ)
= − ∂

∂ϕ
+
W ′(ϕ)

W(ϕ)
−
W ′

N+1(ϕ)

WN+1(ϕ)

where W = W [χ1, · · · , χN+1] and WN+1 = W [χ1, · · · , χN ].
From Proposition 2, we therefore have for ν ≥ 1

σN+1
ν+1 = σN

ν+1 +
2

sin(ϕ− φ)

( ∂

∂φ
+
W ′(φ)

W(φ)
−
W ′

N+1(φ)

WN+1(φ)

)
σN

ν(6.4)

+
2

sin(ϕ− φ)

( ∂

∂ϕ
− W ′(ϕ)

W(ϕ)
+
W ′

N+1(ϕ)

WN+1(ϕ)

)
σN+1

ν

We wish to show that if (6.3) is valid for σN+1
ν , σN

ν+1 and σN
ν , then it also holds for σN+1

ν+1 .
So, we set



HEAT KERNEL COEFFICIENTS FOR PERIODIC SCHRÖDINGER OPERATORS 13

σN+1
ν =

(−2)ν

W(ϕ)W(φ)

N+1∑
i=1

c
(N+1)
i Wi(ϕ)Wi(φ)T

(ν)
ki

(cos(ϕ− φ))

σN
ν+1 =

(−2)ν+1

WN+1(ϕ)WN+1(φ)

N∑
i=1

c
(N)
i Wi,N+1(ϕ)Wi,N+1(φ)T

(ν+1)
ki

(cos(ϕ− φ))

σN
ν =

(−2)ν

WN+1(ϕ)WN+1(φ)

N∑
i=1

c
(N)
i Wi,N+1(ϕ)Wi,N+1(φ)T

(ν)
ki

(cos(ϕ− φ))

Here c
(N)
i and c

(N+1)
i are defined as in Theorem 1, with m = N and m = N + 1, respectively.

Because

2

sin(ϕ− φ)

∂

∂ϕ
T ν

k (cos(ϕ− φ)) = −2T ν+1
k (cos(ϕ− φ))

and

2

sin(ϕ− φ)

∂

∂φ
T ν

k (cos(ϕ− φ)) = 2T ν+1
k (cos(ϕ− φ)),

we get

σN+1
ν+1 =

(−2)ν+1

W(ϕ)W(φ)

N+1∑
i=1

c
(N+1)
i Wi(ϕ)Wi(φ)T

(ν+1)
ki

(cos(ϕ− φ))

provided that the following two equations hold:

(6.5) W ′
i(ϕ)WN+1(ϕ)−Wi(ϕ)WN+1(ϕ) = W(ϕ)Wi,N+1(ϕ)

(6.6) W ′
i,N+1(φ)W(φ)−Wi,N+1(φ)W ′(φ) = (k2

N+1 − k2
i )Wi(φ)WN+1(φ)

We will prove the first equation (6.5) and (6.6) can be proved in a similar way. First, we
rewrite (6.5):

(6.7)
∂

∂ϕ

(
Wi(ϕ)

WN+1(ϕ)

)
=
W(ϕ)Wi,N+1(ϕ)

WN+1(ϕ)2

By Cramer’s rule, the functions yi := (−1)N+iWi/WN+1 satisfy the system of equations

N∑
i=1

χ
(k)
i yi = χ

(k)
N+1 for k = 0, 1, . . . , N − 1.

By taking the derivative from both sides of this equation with respect to ϕ we obtain∑N
i=1 χ

(k)
i y′i = 0 for k = 0, 1, . . . ,m− 2 . For k = m− 1, we have
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N∑
i=1

χ
(N−1)
i y′i =

N∑
i=1

(−1)N+iχ
(N−1)
i

(
Wi

WN+1

)′

=
1

WN+1

N∑
i=1

(−1)N+iχ
(N−1)
i W ′

i −
W ′

N+1

W2
N+1

N∑
i=1

(−1)N+iχ
(N−1)
i Wi

=
W

WN+1

− 0 =
W

WN+1

.

Solving the latter system of equations for y′i we obtain y′i = (−1)N+iWN+1Wi,N+1/W2
N+1,

which is equivalent to (6.7). �

The following result is an immediate consequences of (6.3):

Corollary 1. For the Hadamard coefficients Uν of L we have

Uν ≡ 0 for all ν > km .

One can also prove from Theorem 3 the following explicit expression for the asymptotics
of the resolvent kernel

Lemma 4. For the coefficients σ̂ν of the Schrödinger operator L with the potential v(ϕ)
defined in (3.19), we have

(6.8) σ̂ν =
1

Wm(ϕ)Wm(φ)

m∑
i=1

ciWm,i(ϕ)Wm,i(φ)
∂ν

∂ϕν

[
Tki

(cos(ϕ− φ))

]
, ν ≥ 1 .

Proof. First, we recall that

σ̂ν(ϕ, φ) :=
ν∑

l=0

fl,ν(ϕ, φ)σl(ϕ, φ) ,

where functions fl,ν are determined by recurrence relations (2.2) and (2.3). Using now (2.14),
we get

σ̂ν(ϕ, φ) =
ν∑

l=0

(−2)νfl,ν(ϕ, φ)

Wm(ϕ)Wm(φ)

m∑
i=1

ciWm,i(ϕ)Wm,i(φ)T
(l)
ki

(cos(ϕ− φ)) =

1

Wm(ϕ)Wm(φ)

m∑
i=1

ciWm,i(ϕ)Wm,i(φ)
ν∑

l=0

(−2)νfl,ν(ϕ, φ)T
(l)
ki

(cos(ϕ− φ)) .

Hence, in order to complete the proof it suffices to verify that

∂ν

∂ϕν

[
Tki

(cos(ϕ− φ))

]
=

ν∑
l=0

(−2)νfl,ν(ϕ, φ)T
(l)
ki

(cos(ϕ− φ)) .

Such verification can be easily done by induction in ν using relations (2.2) and (2.3). �

We conclude the paper with explicit formulas for the Hadamard coefficients of specific
operators (2.12).

Take (k1, k2) = (2, 3) and (ϕ1, ϕ2) = (π/2, 0). Then L takes the form

L = 2n+1 +
10(x2

1 + x2
2)(15x

2
2 − x2

1)

(5x2
2 + x2

1)x
2
1
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and the non-zero Hadamard coefficients are

U0 = 1

U1 =
10(8x2ξ1ξ2x1 + 3ξ2

1x
2
2 + 15ξ2

2x
2
2 + 3ξ2

2x
2
1 − ξ2

1x
2
1)

ξ1x1(5x2
2 + x2

1)(5ξ
2
2 + ξ2

1)

U2 =
20(24x2ξ1ξ2x1 + 3ξ2

2x
2
1 − ξ2

1x
2
1 + 3ξ2

1x
2
2 + 15ξ2

2x
2
2)

ξ2
1x

2
1(5x

2
2 + x2

1)(5ξ
2
2 + ξ2

1)

U3 = − 960x2ξ2
ξ2
2x

2
1(5x

2
2 + x2

1)(5ξ
2
2 + ξ2

1)

Next, take (k1, k2, k3) = (1, 2, 3) and (ϕ1, ϕ2, ϕ3) = (π/2, π/2, π/2). Then

L = 2n+1 +
12

x2
2

and the non-zero Hadamard coefficients are

U0 = 1

U1 =
12

x2ξ2

U2 =
30(2x1ξ1 + x2ξ2)

x3
2ξ

3
2

U3 =
15

x3
2ξ

3
2
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