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Abstract

We describe an automated method for computing rigorous lower bounds
for topological entropy which was originally introduced in [DFTn07]. We
combine this method with the work of Zin Arai in [Araar] to find rigor-
ous lower bounds on topological entropy for 43 hyperbolic plateaus of the
Hénon map.

1 Introduction

In the field of Dynamical Systems, computers are most often used as tools for
exploration; computer iteration of maps can give fairly good impressions of the
true underlying dynamics. Due to round-off errors, however, these impressions
are sometimes misleading. We present a method which, although automated,
yields rigorous results. Specifically, our method establishes the existence of a
certain amount of chaos for a particular dynamical system, with topological
entropy as a measure of chaos.

We apply this technique to the Hénon family of maps. There are several
reasons for this choice. First, the Hénon maps are considered a standard place
to test new ideas in dynamical systems. Secondly, we seek to expand upon work
done by Zin Arai [Araar] and Davis, Mackay, and Sannami [DMS91] on the
Hénon maps.

The Hénon maps were originally proposed by Hénon because of evidence
of a strange attractor for the classical parameter values a = 1.4 and b = 0.3.
We study these parameters in [DFTn07]. In this paper, we look at parameters
for which the Hénon maps exhibit different behavior; namely, we focus on the
parameters for which the maps are uniformly hyperbolic.

In this setting, we combine our results regarding lower bounds for topological
entropy with the results of Zin Arai, where he computes hyperbolic plateaus, to
obtain a global view of entropy as a function of the parameters. Furthermore,
we compare our rigorous results to the conjectures given by Davis, Mackay, and
Sannami.

∗Cornell University
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2 Background

2.1 Symbolic Dynamics

Symbolic dynamics is a useful tool for understanding complicated dynamical
systems. In particular, we focus on subshifts of finite type, which is introduced
below in Definition 2.4. This system is easily analyzed, and for this reason we try
to show a relationship between our particular dynamical system of interest and
a subshift, so that we can gain useful insights about the behavior of our original
system. Symbolic dynamics is a fascinating field with many other applications
besides the one we exploit; for a much more detailed introduction to symbolic
dynamics, see [LM95].

Definition 2.1 (Directed graph). The pair G = (V,E) is called a directed
graph, where V denotes the vertex set, and E ⊆ V × V denotes the edge set.

Definition 2.2 (Transition matrix). Let G = (V,E) be a directed graph with
V = {v1, . . . , vn}. The transition matrix for G is the n × n matrix A with
Aji = 1 ⇐⇒ (vi, vj) ∈ E.

This matrix is usually called an adjacency matrix in graph theory (see e.g.
[Eve79] or [LM95]), and often has Aij = 1 when (i, j) ∈ E. We adopt the reverse
convention so that the image, or outgoing neighbors, of a vertex i in G is the
same as the nonzero entries of A~ei.

Definition 2.3 (Graph full trajectory). A full trajectory of a graph G =
(V,E) is a sequence γ = . . . , v−1, v0, v1, . . . such that (vi, vi+1) ∈ E for all i ∈ Z.

Definition 2.4 (Subshift of finite type). Let G = (V,E) be a directed graph.
Then the symbol space XG is the set of all full trajectories of G. The corre-
sponding symbol map σG : XG → XG is defined as

σG

(
(sk)k∈Z

)
:= (sk+1)k∈Z. (1)

The pair (Xg, σG) is called a subshift of finite type.

In graph-theoretical terms, XG is the set of bi-infinite walks on G. The map
σG just shifts these sequences by 1. The term “subshift of finite type” refers
to the fact that G only allows a subset XG of the full shift corresponding to
the directed complete graph on n vertices, and that we have only finitely many
symbols. For a suitable metric d on XG, we have that σG is a continuous map;
for example, one could take

d
(
(sk)k∈Z, (tk)k∈Z

)
=

∞∑
k=−∞

|sk − tk|
2|k|

. (2)

Under such a metric, (XG, σG) is a continuous dynamical system.
We want to study invariant behavior of dynamical systems, so the following

two definitions are useful.
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Definition 2.5 (Strongly-connected component). Given a graph G =
(V,E), define a relation ≤G on V , where v ≤G w if there is a (directed) path in G
from v to w. Then the relation =G, where v =G w ⇐⇒ v ≤G w and w ≤G v
is an equivalence relation on V ; a strongly-connected component of G is an
equivalence class of =G.

In other words, a strongly-connected component is a set S of vertices such
that for any two vertices v, w in S, there is a directed cycle in G going through v
and w. In this way, strongly-connected components are “invariant”, since they
are necessarily cyclic.

Definition 2.6 (Graph invariant set). The invarant set of the graph G is

Inv(G) = {vi | ∃ full trajectory γ with vi ∈ γ} . (3)

In fact, it is easy to see that if H = Inv(G), then XG = XH . Thus, the sub-
shifts (XG, σG) and (XH , σH) are the same. We will see later (Proposition 4.1)
that the invariant set of G is closely related to the strongly-connect components
of G.

2.2 Topological Entropy and Conjugacy

We use topological entropy to measure the relative complexity of different dy-
namical systems. If the topological entropy of a dynamical system f , denoted
h(f), is positive, we say that f is chaotic. Similarly, if h(f) > h(g), then we
say that f is more chaotic than g. Below is the formal definition of topological
entropy.

Definition 2.7 (Topological entropy). Let f : X → X be a continuous map
with respect to a metric d. We say that a set W ⊆ X is (n, ε)-separated under
f if for any distinct x, y ∈W we have d

(
f j(x), f j(y)

)
> ε for some 0 ≤ j < n.

The topological entropy of f is

h(f) := lim
ε→∞

lim sup
n→∞

log(sf (n, ε))
n

, (4)

where sf (n, ε) denotes the maximum cardinality of an (n, ε)-separated set under
f .

The following is a more intuitive way of looking at topological entropy. Call
a sequence x, f(x), f2(x), . . . , fn−1(x) an n-trajectory of f (the first n iterates
of x). Call two points x, y ε-distinguishable if d(x, y) > ε; then sf (n, ε) is
the maximum number of ε-distinguishable n-trajectories, where two trajectories
are ε-distinguishable if some corresponding pair of points in the trajectories
are. With this different interpretation, we can view h(f) as measuring the
exponential growth rate of the number of distinguishable n-trajectories under
f .

While topological entropy can be difficult to calculate in general, there is a
nice formula for subshifts of finite type which is given in the following theorem.
For a proof, see [LM95] or [Rob95].
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Theorem 2.8 (Topological entropy of a subshift). Let G be a directed
graph with transition matrix A, and let (XG, σG) be the corresponding subshift
of finite type. Then the topological entropy of σG is h(σG) = log(sp(A)), where
sp(A) denotes the spectral radius (maximum magnitude of an eigenvalue) of A.

To find lower bounds for topological entropy of a given f , our technique is to
find a subshift of finite type which captures some of the complicated dynamics
of f , and then take the easily-computable topological entropy of the subshift
as a lower bound. Formally, we need to find a semi-conjugacy from f to the
subshift:

Definition 2.9 (Conjugacy, semi-conjugacy). Let f : X → X and g :
Y → Y be continuous maps. A conjugacy from f to g is a bijective function
φ : X → Y such that φ ◦ f = g ◦ φ. A semi-conjugacy is the same except that φ
need only be surjective.

A usual candidate for a semi-conjugacy is the itinerary function, defined
below.

Definition 2.10 (Itinerary function). Assume f : X → X is invertible, and
let N ⊆ X be the union of disjoint compact sets N1, . . . , Nk. The itinerary of
a point x ∈ N , if it exists, is the sequence sx := . . . , s−1, s0, s1, . . . such that
fn(x) ∈ Nsn

for all n ∈ Z. Let S = {x ∈ N | sx exists} and let G be a graph on
vertices {1, . . . , k} such that sx is a bi-infinite path in G for every x ∈ S. Then
we define the itinerary function ρ : S → XG, by ρ(x) = sx.

We will see in Section 2.4 that the set S used above is called the maximal
invariant set of N .

The reason that ρ is a good candidate for a semi-conjugacy is that it already
satisfies ρ ◦ f = σG ◦ ρ, as one can easily check. To show that ρ is a semi-
conjugacy, one only needs to show that ρ is surjective; we discuss one way to
prove this in Section 4.3.

If we can somehow prove the existence of a semi-conjugacy, which could be
the itinerary map ρ discussed above, then the entropy of the subshift is a lower
bound for the entropy of f . This is a consequence of the following theorem (see
Chapter 8 of [Rob95] for a proof).

Theorem 2.11 (Topological entropy and semi-conjugacy). Let f and g be
continuous maps, and let φ be a semi-conjugacy from f to g. Then h(f) ≥ h(g).

Note that if f and g are conjugate, theorem 2.11 applied twice gives us
h(f) = h(g). In other words, topological entropy is invariant under conjugacy;
this coincides with the intuition that topological entropy is of a measure of
chaos.

2.3 Shift Equivalence

The concept of shift equivalence comes up both in the definition of the Conley
index in the next section, and in relation to symbolic dynamics (see Theo-
rem 2.15). The general idea behind shift equivalence is to capture the eventual
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behavior of a dynamical system, or the eventual range of a matrix. That is, two
maps are shift equivalent roughly when high iterates of the maps behave in the
same way. In particular, it ignores “transient” behavior.

The first type of shift equivalence, called elementary shift equivalence, is the
strongest. A chain of such equivalence leads to a strong shift equivalence. Both
of these are defined below.

Definition 2.12 (Elementary shift equivalence). Let A and B be matrices.
An elementary shift equivalence between A and B is a pair (R,S) such that

A = RS and B = SR. (5)

In this case, we write (R,S) : A ≈ B.

Definition 2.13 (Strong shift equivalence). Two matrices A and B are
strongly shift equivalent with lag ` if there exists a sequence of matrix pairs
(R1, S1), . . . , (R`, S`) such that

A = R1S1, S1R1 = R2S2, . . . , S`−1R`−1 = R`S`, S`R` = B. (6)

In other words, for some A = A1, A2, . . . , A`−1, A`+1 = B such that (Rk, Sk) :
Ak ≈ Ak+1 for all k ≤ `. In this case we say that {(Rk, Sk)} is a strong shift
equivalence between A and B, and we write A ≈ B (lag `).

While we will see in Theorem 2.15 that strong shift equivalence is the right
notion for subshifts of finite type, the Conley index uses a more computable
equvalence relation, called weak shift equivalence, or simply shift equivalence.

Definition 2.14 (Shift equivalence). Two matrices A and B are shift equiva-
lent with lag ` if there exist matrices R,S such that the following four conditions
hold

A` = RS, B` = SR, (7)
AR = RB, SA = BS (8)

In this case, we write (R,S) : A ∼` B.

Shift equivalence is weak in the sense that A ≈` B =⇒ A ∼` B; see [LM95]
for a proof. Note that this definition applies to group homomorphisms as well,
and is an equivalence relation in that setting as well. In fact, we define the
Conley index using shift equivalence in that setting. In the context of matrices,
there is an important result due to R. F. Williams relating shift equivalence to
symbolic dynamics [Wil73].

Theorem 2.15 (Shift equivalence and conjugacy). For directed graphs G
and H, the corresponding subshifts (XG, σG) and (XH , σH) are conjugate if and
only if G ≈ H (G is strongly shift equivalent to H).

This theorem allows us to prove that two subshifts are conjugate by a chain
of simple matrix computations. Finding matrices that give a strong shift equiv-
alence, however, can be a very difficult problem. In Section 3, we discuss a
variant of this problem, namely finding a smaller matrix B in the same strong
shift equivalence class as A.
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2.4 Conley Index

The Conley index is a topological generalization of Morse theory which allows us
to study our dynamical system f : X → X with the computer, where numerical
errors are necessarily present. Because of its topological nature, the Conley
index is robust with respect to small numerical errors in the computation, but
still provides enough information about f to be useful. To begin, we introduce
the invariant set, which is the main object in Conley index theory.

Definition 2.16 (Maximal invariant set). The maximal invariant set of a
set A ⊆ X, written Inv(A, f), is the largest set S ⊆ A such that f(S) = S.

The robustness of the Conley index comes primarily from the notion of
isolation, defined below. This property ensures that small enough perturbations
will not effect the result.

Definition 2.17 (Isolating neighborhood, isolated invariant set). A set
N is an isolating neighborhood of a set I if

I = Inv(N, f) ⊆ Int (N), (9)

where Int (N) denotes the interior of N . The set I is called an isolated invariant
set relative to N .

Below are the remaining definitions needed for the Conley index.

Definition 2.18 (Index pair, Index map). A pair (P1, P0) of compact sets,
P0 ⊆ P1 ⊆ X, is an index pair for I ⊆ X if

1. The index map fP : (P1/P0, [P0])→ (P1/P0, [P0]) for P defined by

fP ([x]) :=
{

f(x) if f(x) ∈ P1

[P0] otherwise (10)

is continuous,

2. The closure of P1 \ P0 is an isolating neighborhood for I.

Definition 2.19 (Homology Conley index). Let I be an isolated invariant
set, and let P = (P1, P0) be an index pair for I, with index map fP . The Conley
index of I is the shift equivalence class of the map fP∗:

Con(I) := [fP∗]σ, (11)

where fP∗ : H∗(P1, P0) → H∗(P1, P0) is the map fP induces on the relative
homology groups H∗(P1, P0).

A crucial result is that the Conley index is well-defined [MM02], meaning
that the shift equivalence class of fP∗ is the same for all index pairs P of a
particular isolated invariant set I. The real power of the Conley index becomes
more clear with the introduction of a quantity called the Lefschetz number. In
the subsequent theorem, this number puts the topological information encoded
in the Conley index to good use.
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Definition 2.20 (Lefschetz number). Let S be an isolated invariant set and
let P = (P1, P0) be an index pair for S. The Lefschetz number of S is defined
as

L(S, f) :=
∑

k

(−1)k tr fP k (12)

where and tr fP k denotes the trace of the k-th homology map fP k : Hk(P1, P0)→
Hk(P1, P0).

Theorem 2.21 (Lefschetz fixed point theorem). If S is an isolated invari-
ant set and L(S, f) 6= 0, then S contains a fixed point.

For a proof of the Lefschetz fixed point theorem, see [Szy97]. We will use a
corollary to this theorem to show the existence of periodic orbits in Section 4.3
(Corollary 4.2).

We wish to automate the computation of the Conley index and Lefschetz
numbers, so at some point we need to feed the map to a computer. The following
sets the stage for how this is done, starting from the discretezation of the phase
space into n-dimensional boxes, to how to define f on these boxes, and finally
how to use Conley index theory in this discrete setting.

Definition 2.22 (Grid in phase space, topological realization). Given
X ⊆ W ⊆ Rn such that W = [a1, b1] × · · · × [an, bn], we define a grid G(r) at
resolution r to be the set

G(r) =

{
n∏

i=1

[
xi, xi + di

]∣∣∣∣∣ xi − ai

di
∈ {0, . . . , 2r − 1}

}
, (13)

where di = (bi − ai)/2r. We will refer to the elements of G(r) as boxes. The
topological realization of a set B of boxes is defined as

|B| :=
⋃

B∈B
B (14)

We now develop a notion of the dynamics on the boxes induced by f . More-
over, as we wish to do rigorous computations, we need to keep track of any
errors that arise in the computation. The following framework allows us to do
that.

Definition 2.23 (Multivalued map). Let Y be the powerset of X. A function
F : X → Y is a multivalued map on X, so that F (x) ⊆ X for all x. We denote
this as F : X⇒X. When X is discrete we sometimes think of F as a directed
graph.

Definition 2.24 (Enclosure, continuous selector). Let F : X⇒X. A con-
tinuous selector for F is a continuous map f : X → X such that for all x ∈ X,
f(x) ∈ F (x) and F (x) is homotopic to a point. In this case, F is an enclosure
of f .
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Definition 2.25 (Grid enclosure). Given a grid G and a map f : X → X, a
grid enclosure of f is a multivalued map F : G⇒G such that the map |F| : X⇒X
defined by

|F|(x) := |F ({B | x ∈ B})| (15)

is an enclosure of f .

In this terminology, we want to find a grid enclosure F of f . We obtain F
using interval arithmetic, to ensure that for any box B, its image F(B) contains
f(x) for all x ∈ B.

We next define the Conley index in the setting of a discrete space, so that
we can make rigorous statements about the dynamics of f . As above, we first
define an analogous isolated invaliant set and isolating neighborhood.

Definition 2.26 (Box isolating neighborhood, box invariant set). A grid
neighborhood o(S) of S is the set

o(S) = {B ∈ G | |B| ∩ |S| 6= ∅} . (16)

A set I is a box invariant set relative to a set N if

I = Inv(N ,F) := Inv(F|N ), (17)

where Inv(F|N ) is the invariant set of the directed graph associated to F , re-
stricted to N (see Definition 2.6). If in addition we have o(I) ⊆ N , then N is
a box isolating neighborhood of I.

Note that if F is a grid enclosure, then |N | is an isolating neighborhood of
Inv(|I| , f). This leads to the following definition.

Definition 2.27 (Box index pair). A pair P = (P1,P0) of box sets is a
box index pair for a grid enclosure F if the corresponding topological realization
|P| = (|P1| . |P0|) is an index pair for any continuous selector f ∈ |F|. That is,
cl (P1 \ P0) = |P1 \ P0| is an isolating neighborhood under f and the quotient
map fP as in defined in Definition 2.18 is continuous.

It is not obvious that box index pairs are easily computable. There is, how-
ever, an efficient algorithm to compute them, based on the fact that the topo-
logical realization of a grid isolating neighborhood is an isolating neighborhood,
as mentioned above. This is given as Algorithm 2 in Section 4.2.

From a box index pair P = (P1,P0), we define its Conley index to be the
Conley index of |P| = (|P1| , |P0|) as given in Definition 2.19. That is, the
Conley index of P is the map on relative homology induced by f|P|.

3 Simplifying Shift Equivalence Representatives

The notion of shift equivalence shows up in two important places in the theory
behind our approach; the first is in the definition of the Conley index, and the
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second is in the theory of symbolic dynamics (see Theorem 2.15). In both of
these most cases, we seek the simplest possible representative of the shift equiva-
lence class of a given matrix. The task of finding the smallest representative can
be difficult, the following two subsections discuss how one can at least simplify
or reduce the given matrix to a smaller representative.

3.1 Reducing Subshifts

Given a subshift of finite type (XG, σG) for a graph G, it is often of interest
to know whether there is a graph H on fewer vertices such that (XG, σG) and
(XH , σH) are conjugate. By Theorem 2.15, it is enough to prove that the tran-
sition matrices A and B for G and H, respectively, are strongly shift equivalent.
We give a procedure for finding such a B below.

Let A be n× n. We wish to find conditions that allow us to replace A with
a smaller n − 1 × n − 1 matrix B which is strongly shift equivalent to A. The
following two conditions allow us to do exactly that by contracting vertices i
and j.

Forward Condition: A~ei = A~ej and (~e>i A) · (~e>j A) = 0 (18)

Backward Condition: (A~ei) · (A~ej) and ~e>i A = ~e>j A (19)

Here ~ei denotes the column vector with a 1 in position i and zeros elsewhere. The
forward condition says that i and j have the same image but disjoint preimages,
and the backward condition says they have the same preimage but disjoint
images. Note that the backward condition is the same as the forward condition
for i and j in A>. The following result allows us to reduce A to B if either of
these conditions are satisfied for some pair of vertices. A somewhat different
proof involving graph splittings is given in chapter 2 of [LM95].

Theorem 3.1 (Strong Shift Equivalence by Contraction). If i and j
satisfy the forward condition (18) or backward condition (19) for an n × n
transition matrix A, then A is strongly shift equivalent to the n − 1 × n − 1
matrix B obtained by contracting vertices i and j to i in A. Specifically, if the
forward condition is satisfied, then B = Y AX, where

X =

 Ij−1 0
~0 ~0
0 In−j

 , Y =
[

Ij−1 ~ei 0
0 ~0 In−j

]
, (20)

and X and Y are n×n−1 and n−1×n matrices, respectively. If the backward
condition is satisfied, then B = X>AY > for the same X and Y .

Proof. Assume the forward condition is satisfied for i and j in A. By direct
computation, we have

XY =

 Ij−1 0
~0 ~0
0 In−j

[
Ij−1 ~ei 0

0 ~0 In−j

]
=

 Ij−1 ~ei 0
~0 0 ~0
0 ~0 In−j

 , (21)

9



and thus AXY ~ek = A~ek if k 6= j and AXY ~ej = A~ei. By the forward condition
(18) we have A~ej = A~ei, so in fact AXY = A. Letting R = AX and S = Y , we
now have

RS = (AX)Y = A (22)
SR = Y (AX) = B. (23)

Thus, (R,S) : A ≈ B.
If instead the backward condition is satisfied, then i and j satisfy the forward

condition for A> by the remark above. Thus, A>XY = A> by the above
computation. Now take R = Y > and S = X>A; then

RS = Y >(X>A) = (A>XY )> = (A>)> = A (24)
SR = (X>A)Y > = B, (25)

so again (R,S) : A ≈ B.

By applying Theorem 3.1 repeatedly, as long as there exist i, j satisfying
either contraction condition, we can reduce A to a much smaller representative of
its strong shift equivalence class; the resulting matrix B at the end of this process
corresponds to a subshift (XH , σH) which is therefore conjugate to (XG, σG).
In general, however, there are many pairs (i, j) to choose from, and finding
the sequence of contractions that leads to the smallest possible representative
is roughly equivalent to searching all possible partitions of {1, . . . , n}, of which
there are exponentially many in n.

3.2 Reducing Matrices over Z
To prove that the itinerary function defined in Definition 2.10 is surjective, we
use the Lefschetz theorem, which involves computations with the index map
fP∗. As we will see in section 4.3, the fewer generators we have in each region
of the phase space, the easier the computations are. For this reason, we try to
find the smallest representative of the shift equivalence class of fP∗ before doing
these computation. This simplification corresponds to ignoring the transient
generators, which are generators not in the image or preimage of a high enough
iterate of fP∗.

The following theorem, which is a general result on the shift equivalence of
matrices over R, will give us our desired representative.

Theorem 3.2. Let

A =

 A11 0 0
A21 A22 0
A31 A32 A33

 ∈ Rn×n

be a 3×3 block lower-triangular matrix, with square matrices Aii on the diagonal.
If Ak

11 = 0 and Ak
33 = 0 for some k, then A is shift equivalent to A22 with lag

` = 2k.
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Proof. For i = 1, 2, 3, let ni×ni be the size of the square matrix Aii, and define
projection and inclusion maps respectively as follows:

π =
[
0n22×n11 In22 0n22×n33

]
, ι = π>. (26)

We will show that the matrices R = πAk and S = Akι give the desired shift
equivalence between A and A22.

Let (An)ij denote the ni × nj block of An. Then

An =

(A11)n 0 0
(An)21 (A22)n 0
(An)31 (An)32 (A33)n

 , (27)

and by induction on n,

(An)21 =
n∑

i=1

Ai−1
22 A21A

n−i
11

(An)32 =
n∑

i=1

Ai−1
33 A32A

n−i
22 . (28)

In this notation, we also have that

R =
[
(Ak)21 Ak

22 0
]
, S =

 0
Ak

22

(Ak)32

 .

We now verify the conditions of shift equivalence.
Condition 1: A22R = RA

We have
A22R =

[
A22(A

k)21 (A22)
k+1 0

]
and

RA =
[

(Ak)21A11+(A22)
kA21 (A22)

k+1 0
]

so it suffices to show that the first block entries are equal. Using (28) and the
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fact that Ak
11 = 0,

A22(Ak)21 =
k∑

i=1

Ai
22A21A

k−i
11

=
k+1∑
l=2

Al−1
22 A21A

k+1−l
11

=
k+1∑
l=1

Al−1
22 A21A

k+1−l
11

=
k∑

l=1

Al−1
22 A21A

k+1−l
11 + Ak

22A21

= (Ak)21A11 + Ak
22A21

Condition 2: AS = SA22

Follows similarly to the verification of Condition 1.

Condition 3. RS = (A22)2k

This follows from a simple computation:

RS =
[
(Ak)21 (A22)k 0

]  0
(A22)k

(Ak)32

 = (A22)2k.

Condition 4. SR = A2k

By (27), and the fact that Ak
11 = 0 = Ak

33, we have

A2k = (Ak)2 =

 0 0 0
(Ak)21 Ak

22 0
(Ak)31 (Ak)32 0

2

=

 0 0 0
Ak

22(A
k)21 A2k

22 0
(Ak)32(Ak)21 (Ak)32Ak

22 0

 .

On the other hand,

SR =

 0
Ak

22

(Ak)32

 [
(Ak)21 Ak

22 0
]

=

 0 0 0
Ak

22(A
k)21 A2k

22 0
(Ak)32(Ak)21 (Ak)32Ak

22 0

 .

Thus, we have verified the conditions and A is shift equivalent to A22.

We will show in Section 4.2 that, by a reordering of basis elements, fP∗
satisfies the hypotheses for Theorem 3.2.
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4 Automated Method for Rigorous Lower Bounds

4.1 Overview

Our overall goal is to find a semi-conjugacy from our original dynamical system
f to a subshift of finite type (XG, σG). This semi-conjugacy will give us a lower
bound on the topological entropy of f .

The procedure we use begins by discretizing the phase space X by computing
a grid G(r) for some resolution r, and then computing the multivalued map F
on boxes. We do this using a software package called GAIO (Global Analysis of
Invariant Objects) which is maintained by Oliver Junge [DFJ01], and an interval
arithmetic package called INTLAB [Cse99]. From G and F we compute a lower
bound for the topological entropy of f in three phases:

I Find a box collection S that captures as much of the complicated dynamics
of f as possible.

II Compute an isolated invariant set from S and compute its index pair and
index map.

III Find a directed graph whose corresponding subshift can be proven to be
semi-conjugate to f via the Lefschetz fixed point theorem.

The following two subsections discuss the last two phases, which correspond to
the bulk of the automated proof. The first phase is discussed last, as there are
many different methods for producing a good box collection.

4.2 Phase II: Obtaining the Index Map

The second phase of the computation takes the box set S computed in Phase
I, which hopefully captures some complicated dynamics from our dynamical
system f , and computes the Conley index of an isolated invariant set I “grown”
from S.

The first step is computing an isolated invariant set I with isolating neigh-
borhood N from the given box set S. We do this by invoking the Algorithm 1.

N ← S
repeat
I ← Inv(P |N )
N0 ← N
N ← o(I)

until N ⊆ N0

Algorithm 1: Grow isolated invariant set

Here P denotes the graph (or transition matrix) for F and PS denotes the
subgraph of P on the vertices of S. The next task is to compute a box index
pair P = (P1,P0) for I. As we mentioned after Definition 2.27, there is also
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an efficient algorithm for finding P. Assuming N is a box isolating neighbor-
hood isolating the box invariant set I, as produced by Algorithm 1, we use the
following algorithm.

P0 ← ∅
K ← F(N ) ∩ (o(N ) \ N )
while K 6= ∅ do
P0 ← P0 ∪ K
K ← (F(P0) ∩ o(N )) \ P0

end while
P1 ← N ∪P0

Algorithm 2: Build index pair

Let P = (P1, P0) = |P|, which is the index pair for the isolated invariant
set I in |I| (see the discussion at the end of Section 2.4 for this notation). We
can now compute the map fP∗ induced on relative homology groups by the
index map fP for (P1, P0) using a program called homcubes [Pil98]. This useful
program is part of the CHomP package [cho], and does exactly what we need
here.

Finally, once we have fP∗, we reduce it to a smaller representative of its
shift equivalence class [fP∗]σ. Note that since we are considering f : X → X
with X ⊆ Rn, and the box collections we are considering are all finite, the map
fPk : Hk(P1, P0) → Hk(P1, P0) is linear on a finitely generated free abelian
group. Since Hk(P1, P0) and fPk must be trivial for k > n, we can think of fP∗
as a finite list of matrices with integer entries.

With this matrix representation, we must show that by a change of basis,
fP∗ has a block lower-triangular form and satisfies the nilpotency conditions of
Theorem 3.2. Since we can always satisfy these condition trivially by taking
the blocks A11 and A33 to have size 0, the task becomes maximizing the size of
these blocks, so the remaining middle block, the new representative, is as small
as possible.

In practice, we consider the directed graph GP∗ whose transitions are given
by the nonzero entries of fP∗. We then merely compute the invariant set
Inv(GP∗) of GP∗, using depth-first search to find the strongly connected compo-
nents (see Definition 2.5) and connections between them, and take the submatrix
of fP∗ corresponding to the elements of Inv(GP∗) as the new representative. The
following shows that this procedure is validated by Theorem 3.2.

Proposition 4.1 (Invariant set and strongly-connected components).
Let G = (V,E) be a directed graph. Then Inv(G) is the set of vertices in strongly-
connected components of G and those on paths between strongly-connected com-
ponents. If G is connected, there is a partitioning G<, Inv(G), G> of the ver-
tices, such that the only directed edges between partitions are from G< to Inv(G)
or G> and from Inv(G) to G>.

Proof. Define a relation ≤G on V as in Definition 2.5, and let S be the set of
vertices in strongly-connected components or on paths between them.
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(Inv(G) ⊆ S): Let v ∈ Inv(G), and let γ = . . . , v−1, v=, v1, . . . be a full
trajectory in G with v0 = v. Then certainly vi ≤G vj when i < j. Since
there are finitely many vertices, there are only finitely many equivalence classes
for =G. Thus, since γ is nondecreasing with respect to this relation, there is
some large N for which vi =G vN and v−i =G v−N for all i > N . Since the
equivalence classes of =G are the strongly-connected components, γ starts and
ends in a strongly-connected component, so v ∈ S.

(Inv(G) ⊇ S) Let v ∈ S. Then there are vertices w, x in stongly-connected
components such that w ≤G v ≤G x. By definition of the relation, we have
paths pwv from w to v and pvx from v to x. By definition of strongly-connected,
we can find paths (cycles) cw from w to w and cx from x to x. Thus, we have
a full trajectory through v: . . . cwcwcwpwvpvxcxcxcx . . . , so v ∈ Inv(G).

If G is connected, then we can define

G> = {v /∈ Inv(G) | ∃x ∈ Inv(G) s.t. v ≥G x} (29)
G< = V (G)− Inv(G)−G>. (30)

Clearly, this is a partition of the vertices; we need only show that there are no
paths out of G> and no paths from Inv(G) to G<. If there were nodes v ∈ Inv(G)
and w ∈ G< with v ≤G w, then we have w ∈ G> by definition of G>, which
contradicts w ∈ G<. If u ∈ G> and u ≤G w, then for some v′ ∈ Inv(G) we would
have v′ ≤G u ≤G w, which again contradicts the definition of G>. Finally, if
u ≤G v, then as v′ ≤G u for some v′ ∈ Inv(G), u would be on a connecting path
between two strongly-connected components, and thus in Inv(G). Therefore,
the only paths between these partitions are from G< to Inv(G) ∪G> and from
Inv(G) to G>.

Let A be the matrix given by reordering the generators so that (GP∗)< comes
first, Inv(GP∗) second, and (GP∗)< last. One can easily show that A satisfies
the hypotheses of Theorem 3.2. That is, the blocks for (GP∗)< and (GP∗)> are
nilpotent, and the reordered matrix is lower block diagonal. Hence, as changing
bases preserves shift equivalence, we have computed a simpler representative of
[fP∗]σ.

4.3 Phase III: Finding a Subshift Semi-conjugate to f

Once we have the map fP∗ on relative homology, we find in this third phase
an appropriate subshift of finite type that is semi-conjugate to f . This phase is
probably the most difficult, both in terms of the theory behind it, and often the
computational work involved. The main theoretical tool we use in this phase is
the Lefschetz number (see Definition 2.20). The crucial result is the following
corollary to the Lefschetz fixed point theorem (Theorem 2.21).

Corollary 4.2. Given N ⊆ X which is the union of disjoint compact sets
N1, . . . , Nk, let S = Inv(N, f) and S′ = Inv(N1, f |Nk

◦ · · · ◦ f |N1) ⊆ S. Then if

L(S′, f |Nk
◦ · · · ◦ f |N1) 6= 0, (31)
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then f |Nk
◦ · · · ◦ f |N1 contains a fixed point in S′ that corresponds to a period k

point under f |S whose orbit travels through the regions N1, . . . , Nk in order.

From this corollary, we can prove a theorem that allows us to find a semi-
conjugacy from a subshift to f . This result from [DFTn07] makes this phase of
the computation possible.

Theorem 4.3 (Semi-conjugacy of subshift by Lefschetz). Let N ⊆ X
be the union of disjoint compact sets N1, . . . , Nk, with S := Inv(N, f). Let
G = ({1, . . . , k} , E) be a directed graph such that every edge is in a strongly
connected component, and for every cycle γ = a1, . . . , am, the corresponding
Lefschetz number satisfies

L(Inv(Na1 , fγ), fγ) 6= 0, (32)

where f |γ = f |Nam
◦ · · · ◦ f |Na1

. Then the itinerary map ρ : S → XG is a
semi-conjugacy between f |Ŝ and (XG, σG), where Ŝ = ρ−1(XG).

Proof. Let P be the set of periodic points of XG. Then since all edges of G are
in strongly-connected components, we have that XG is the closure of P ; that
is, XG = P . By Corollary 4.2, for any periodic orbit s ∈ XG, there exists a
corresponding periodic orbit in ρ−1(s). Then S′ := ρ−1(P ) must be a compact
subset of the compact set S := Inv(N, f). Since ρ is continuous and S′ is
compact, ρ must map S′ onto XG. Finally, since S′ ⊆ Ŝ and ρ(Ŝ) ⊆ XG, ρ is a
semi-conjugacy on Ŝ.

The only difficulty that remains is finding the directed graph G which sat-
isfies the Lefschetz condition in Theorem 4.3 above, while giving us as much
topological entropy as possible. We now show how to construct such a G from
fP∗.

To simplify the computations, we make an assumption: assume fP∗ is trivial
for all but one level of homology k. The procedure would have to be generalized
slightly if this is not the case, but in most examples, particularly for Hénon,
this assumption is valid.

We now describe the actual computation. The first step is to compute an
“upper bound” subshift by taking GP∗ from the previous section and contracting
the generators of each connected region of I to a single vertex. The resulting
graph H corresponds to a subshift of finite type which will be semi-conjugate
to f if every cycle of H has a nonzero Lefschetz number.

It would seem that we may be done, in light of Theorem 4.3, but there are
two potential problems with this step. First, in the case that H has positive
topological entropy, which is the case we are interested in, there are infinitely
many cycles in H, and thus infinitely many Lefschetz number computations.
Secondly, some cycles may have a Lefschetz number of zero, thus leaving us
unable to prove that (XH , σH) is semi-conjugate to f .

To solve these problems, we make use of two fairly complicated algorithms.
The first attempts to reduce the infinite list of Lefschetz computations down to
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a finite list using group theory, and the second copes with the cycles with zero
Lefschetz number by removing edges from H. There is a lot of interesting math
and computer science embedded in these algorithms, and the interested reader
should see [DFTn07] for more details.

4.4 Phase I: Approximating Maximal Symbolic Dynamics

The goal of this phase is to produce a box collection whose index pair captures
as much of the complicated dynamics of f as possible. Using topological entropy
as the measure of our success in doing so, we can think of this as finding a box
collection that leads to a subshift with the highest possible topological entropy,
namely h(f). Unfortunately, it may not be possible to achieve h(f) if f is not
uniformly hyperbolic (see Section 5). Moreover, the running times for the last
two phases of the method, which are described in the two preceding subsections,
are often exponential in the grid resolution. For these reasons, we amend our
goal to finding maximal symbolic dynamics for a given grid resolution. We will
later vary the grid resolution within the limits imposed by the computation
times.

The following definition will make the discussion clearer.

Definition 4.4 (Computed bound on topological entropy). Given a box
collection S ⊆ G, let subshift(S) denote the symbol system obtained by running
the last two phases of the algorithm on S. Then the function

halg(S) := h(subshift(S)) (33)

is the topological entropy bound we get from S.

Note that since our algorithms are deterministic, halg is well-defined. With
this framework, we wish to find S such that

S ∈ argmaxW⊆G {halg(W)} . (34)

Thus, we must solve the above maximization problem, but since there on the
order of 22nr

such box sets W if X ⊆ Rn (or more precisely, 22dr

, where d
is the Hausdorff dimension of the invariant set), this maximization problem is
computationally infeasible for high resolutions.

While there are many analytical tools for finding maxima of certain type of
functions, these are useless since we have practically no control over the behavior
of halg; the value halg(S) depends on the rather complicated procedure outlined
in sections 4.2 and 4.3. Therefore, it is useful to think of this maximization as
a search over a state space, which allows us to use techniques from the field of
Artificial Intelligence. By using these techniques, however, we will have to settle
with a potentially suboptimal set S, although we hope that S will be very close
to optimal.

With these ideas in mind, we present below three algorithms for producing
box collections. The first is analogous to a greedy algorithm, and builds S by
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adding periodic points of low period. The second approach also uses periodic
points, but looks at different combinations of such orbits. Lastly, the third
algorithm merely takes the entire invariant set of G, under the assumption that
this set is not connected.

4.4.1 Greedy Approximation

The first algorithm we consider uses the heuristic that topological entropy is
higher for systems with faster mixing. Thus, we look for periodic points of low
periods, and try to find short connections between them. Specifically, we find
all box candidates for periodic points (a box whose image contains itself does
not necessarily contain a fixed point) up to a fixed period K, and then compute
connections between all pairs of these candidates, adding the connections if they
are not “too close” to the set so far. This procedure is given more precisely as
Algorithm 3.

S ← ∅
for k = 1 . . .K do
S ← S ∪ {b | b ∈ Fn(b)}

end for
for i, j ∈ S do
W ← G \ o(o(S))
S ← S ∪ {shortest path from i to j in F|W}

end for
Algorithm 3: Greedy Algorithm

The reason for keeping a separation (of two box widths, in this case) is
that in order to find a semi-conjugacy, we need to first obtain disjoint compact
subsets of the phase space (see Theorem 4.3). If we add too many boxes to our
set, the box invariant set will be too connected, and thus we will not be able
to find a semi-conjugacy. For more on this algorithm and its application to the
classical Hénon map, see [DFTn07].

4.4.2 Breadth-First Search

This second algorithm is in a way a generalization of the first. Using a similar
heuristic to the greedy approach, we also compute low periodic points up to
some fixed period K. Instead of including all of them in S, however, we try
connecting different combinations of periodic orbits together, to make many
different sets. To navigate through the possibilities, we use breadth-first search.

Let O1, . . . ,On be collections of boxes, each of which corresponds to a pe-
riodic orbit of period at most K. To generate these sets Oi we take periodic
candidates of a period p, find cycles of length p through those boxes, and and
then grow an box isolated invariant set from these using Algorithm 1. Once we
have “grown” a periodic orbit Oi in this way (which in general will have many
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more than p boxes), we remove Oi from the list of candidates and continue until
there are no candidates left.

Once we have all the periodic orbits O1, . . . ,On, we compute pairwise con-
nections Cij between Oi and Oj , again using shortest paths, and let Sij =
Oi ∪ Cij ∪Oj . Conceptually, this set Sij corresponds to a simple horseshoe-like
system, consiting of two periodic orbits and connections between them. This
breadth-first search algorithm is also called the Baby Horseshoe Method because
of its use of these small sets.

Finally, using the notation [n] := {1, . . . , n}, let A ⊆ [n] and define

SA :=
⋃

{i,j∈A | i<j}

Sij (35)

h(A) := h (subshift(SA)) , (36)

where the subshift function is as defined in Definition 4.4.
With the above setup, we simply maximize h(A) over all A ⊆ [n]. While

this can be done using brute-force search, some convenient pruning assumptions
can make the search much more efficient:

1. Unimodality of h along chains in the subset lattice of [n]
More precisely, we assume that if h(A) < h(B) for some B ⊂ A, then
h(C) ≤ h(A) for all C ⊇ A. In other words, we assume that if adding
A\B to B decreases entropy, then adding more orbits will only decrease the
entropy more. This assumption is based on observation, and seems to be
true of any chain S1 ⊂ S2 · · · ⊂ Sn in the boolean lattice of box collections.
The most likely explanation for this phenomenon is that symbol regions
tend to glue together as more is added to the set; this gluing often increases
the complexity of the region’s homology, making transitions through the
region harder to prove using Corollary 4.2.

2. Sets that do not increase entropy can be ignored
We assume that if B ⊂ A ⊆ [n] and h(B) = h(A), then h(B ∪ C) ≥
h(A ∪ C) for all C ⊆ [n]. In other words, if A \ B did not increase the
entropy of B, then either we are in the above case, or A \ B will never
contribute to the topological entropy of any set.

With these assumptions, which can be thought of as heuristics, although they
have never proven false in practice, we can use breadth-first search on the
Boolean lattice of subsets of [n], pruning the search tree according to the above
rules whenever possible. This leads to Algorithm 4.

If the two assumptions above are valid, the Baby Horseshoe Method pro-
duces strictly better results than the greedy approach from the previous section,
since the greedy approach corresponds to taking A = [n] in Algorithm 4. In
fact, this approach often does significantly better, since it can come closer to
the “breaking point”, where adding more to the set S actually decreases the
topological entropy bound. The main drawback, however, is that Algorithm 4
is more computationally intensive than Algorithm 3.
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C1 ← {{i} | i ∈ [n]}
for k = 2 . . . n do

for A ⊆ [n], |A| = k do
CA ← {B ∈ Ck−1 | B ⊂ A}
if |CA| = k and h(A) > h(B) for all B ∈ CA then

Ck ← Ck ∪ {A}
end if

end for
end for

Algorithm 4: Baby Horseshoe Method

4.4.3 Maximal Invariant Set

The final method of producing a box set S is to just take S = Inv(F). In words,
we merely take the box invariant set of the entire grid G as our set. In many
situations, such as the classical parameters for Hénon, this box set is connected.
In these cases, Phase II and Phase III of our algorithm yield a trivial semi-
conjugacy which gives a lower bound of 0 for the topological entropy. If the
box invariant set can be separated into non-neighboring sets of boxes, however,
this approach tends to work remarkably well. In fact, this approach is precisely
what we need for hyperbolic maps, which we discuss in the next section.

5 Applications to Hyperbolicity

5.1 Lower Bounds for Hyperbolic Plateaus of Hénon

We now apply the methods outlined in Section 4 to the Hénon maps. Specifi-
cally, we focus on parameter values (a, b) whose corresponding map fa,b has a
special structure known as hyperbolicity. This structure can be thought of as
a generalization of the structure of the Smale horseshoe, namely that there are
invariant directions, and there is uniform contraction and expansion in the sta-
ble and unstable directions, respectively. Some useful properties of hyperbolic
systems are discussed below, but for more details see [Rob95] and [GH90].

Automated methods for proving hyperbolicity have only been introduced
recently, by Suzanne Hruska [Hru06] and Zin Arai [Araar]. We focus here on
the work of Zin Arai for the Hénon family in which he shows that the regions
in Figure 1 are hyperbolic.

Arai uses a somewhat indirect technique to prove hyperbolicity which allows
for more efficient computations than Hruska. As a consequence, however, his
technique does not guarantee that the non-wandering is not just a finite collec-
tion of periodic orbits, or even that it is nonempty. Specifically, Arai’s technique
does not give any information about the topological entropy of the regions in
question. This is one motivation for applying our automated method to the
plateaus computed by Arai.

Another motivation is that topological entropy is constant on the hyperbolic
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Figure 1: Hyperbolic plateaus for Hénon, as computed by Zin Arai, with a on
the horizontal axis and b on the vertical axis. The plateaus are labeled for
reference, and each label is centered over the parameter values we use for its
plateau.

plateaus. This follows from the fact that hyperbolic maps are structurally stable
(see Chapter 9.9 of [Rob95]), so all maps in the same hyperbolic plateau are
conjugate. Thus, by Theorem 2.11, the topological entropy for these maps is
the same. By computing a lower bound for the topological entropy of fa,b for
some parameter point (a, b) in a hyperbolic plateau P , we therefore have the
same lower bound on every point (a′, b′) ∈ P . In some sense, this allows us to
get a lot of information about topological entropy as a function of the parameter
space “for free” by computing lower bounds for a small number of points.

Computing lower bounds for the topological entropy of the plateaus is a very
straightforward application of our technique outlined in section 4. Specifically,
since we are dealing with parameters for which Hénon is hyperbolic, the maximal
invariant set is guaranteed to be disconnected (see [Mil88]), so we can apply the
“maximal invariant set” method from Section 4.4.3. Figure 2 shows our results.
Also, see Appendix A for index pairs and subshifts for the plateaus with nonzero
entropy bounds.

Note that the values in Figure 2 are not necessarily the true entropy values
for the plateaus; they are merely lower bounds. Since we are computing these
bounds for hyperbolic parameter values, however, we know that the system is
conjugate to some subshift of finite type. Thus, if the entropy lower bound
that we compute for a given map levels off as the grid resolution increases, we
have strong evidence that the lower bound is tight. In other words, we would
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Figure 2: Rigorous lower bounds for topological entropy for the hyperbolic
plateaus labeled 1 through 43 in Figure 1.
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have evidence that the itinerary map ρ is a conjugacy rather than just a semi-
conjugacy, and that the entropy bound that we computed is the true value.

To actually prove that the itinerary map ρ is a conjugacy, we would need to
show that ρ is injective in addition to being a semi-conjugacy (see Definition 2.9).
To prove this, we would need to show that the map is hyperbolic in a manner
compatible with our index pair or Markov partition. For example, it might be
enough to show that each region of the index pair had an unstable manifold that
mapped across the region and into the exit set without folding, and a similar
condition for the stable direction. One might be able to automate this proof by
using a technique similar to that of Arai or Hruska.

The plots on the right-hand side in Appendix A show how the topological
entropy lower bound halg(f) computed by our algorithm varies with the grid
resolution. Rather than just varying r for G(r) directly, we vary the bounds of
W (see Definition 2.22) as well, since taking W twice as large for G(r) is the
same as G(r+1), provided that the original W covered the invariant set of f . In
this way, we can “continuously” vary the resolution of the grid.

The plots in Appendix A reveal some unexpected behavior of the algorithm,
and offer insight into the nature of maximal symbolic dynamics as a function of
the grid resolution. One observation is that most of the plateaus have plots with
spikes of positive entropy separated by periods of zero entropy, and some of these
spikes have no perceivable pattern, such as for plateau 18 or 33. Moreover, some
plots (e.g. for plateaus 7, 8, 9) have the highest entropy lower bound occurring
at the first grid resolution with nonzero entropy.

These observations seem to contradict the intuitive notion that the maxi-
mal topological entropy value for G(r) should increase with r, since the grid is
becoming more refined. In fact, one can show that a box index pair for some
G(r) is also an index pair for G(r+1), so the maximal topological entropy for a
grid cannot have a net decrease with r. Unfortunately, this “ideal” behavior is
rare in practice, with plateau 5 being the only good example. This shows that
our algorithm is sometimes significantly suboptimal for a given grid, and this is
part of the reason we look at many grids for each plateau.

Assuming the lower bounds presented are at least close to the true values,
Figure 2 suggests some sort of monotonicity of entropy as the parameters are
varied. Specifically, it seems that entropy is roughly monotone along lines that
are perpendicular to the boundary of the maximal entropy plateau (plateau 1).
Also of interest is the progress toward finding the boundary of zero entropy for
Hénon.

5.2 Lower Bounds for the Area-Preserving Hénon Maps

When b = −1, the Hénon maps are area-preserving and orientation-preserving.
This case has been well-studied in the Physics literature especially; we focus
here on the work of Davis, MacKay, and Sannami [DMS91].

For three different values of a, Davis, et al. give symbolic dynamics which
they conjecture to be conjugate to Hénon at those parameters. Zin Arai also
computed one-dimensional hyperbolic plateaus for when b = −1, so using the
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same technique as with the 2-dimensional plateaus, we can attempt to verify
that the symbol graphs given in [DMS91] are semi-conjugate to Hénon with the
appropriate parameters.

For the value a = 5.4, Davis, et al. conjectured that fa is conjugate to
the subshift corresponding to the following transition matrix TDMS, which has
topological entropy h(TDMS) = 0.6774.

TDMS =



A B C D E F G H

A 1 1 0 0 0 0 0 0
B 0 0 0 1 1 0 1 0
C 0 0 0 1 0 1 0 1
D 0 0 0 0 1 0 0 0
E 1 0 0 0 0 0 0 0
F 0 0 1 1 0 0 0 0
G 0 0 1 0 0 1 0 1
H 0 0 0 1 0 1 0 1


(37)

Using our technique, we obtain a 42× 42 symbol matrix Talg which is semi-
conjugate to f5.4. The topological entropy of this matrix is the same value,
h(Talg) = 0.6774, thus showing that the value for topological entropy (implicitly)
conjectured by Davis, et al. is in fact a lower bound.
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Figure 3: Index pair for a = 5.4 and b = −1, with regions colored to indicate
the symbols for the smaller shift-equivalent symbol system.
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The fact that h(TDMS) = h(Talg) suggests that the subshifts given by TDMS

and Talg might be conjugate. In fact, by repeatly applying Theorem 3.1 for
the right choice of vertices, we obtain a strong shift equivalence between TDMS

and Talg, which shows that the corresponding subshifts are indeed conjugate.
Moreover, the contracted vertices can be chosen so that we obtain the same
Markov partition that was conjectured by Davis, et al. This is shown in Figure 3,
with the colored regions labeled so as to match the labels in (37) above.

Davis, et al. also looked at two other parameter values for Hénon, namely
a = 5.59 and a = 5.65. Unfortunately, our method was not able to compute
lower bounds that match the topological entropy of the subshifts matrices given
in [DMS91]. The plots of entropy verses resolution in Appendix B for these
two parameter values seem to level off slightly, but it is likely that after more
computations, our method will be produce bounds that match the results of
Davis, et al.
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Figure 4: Rigorous lower bounds for topological entropy of the area-preserving
Hénon maps, where b = −1. The plot shows halg(fa) plotted against a.

In addition to the three area-preserving parameter values studied by Davis,
Mackay and Sannami, we also focus on five other values, which all together
correspond to the last eight area-preserving intervals computed by Arai:

5.1483 ∈ [5.1470 5.1497]
5.4000 ∈ [5.1904 5.5366]
5.5900 ∈ [5.5659 5.6078]
5.6500 ∈ [5.6343 5.6769]
5.6839 ∈ [5.6821 5.6858]
5.6859 ∈ [5.6859 5.6860]
5.6934 ∈ [5.6917 5.6952]
5.8499 ∈ [5.7000 ∞),

where the a values on the left are the representatives we use for each interval.
Figure 4 shows a plot of the resulting lower bounds for topological entropy we
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compute for these intervals. Particularly interesting is the entropy of log(2)
obtained in the first interval, since this interval is not part of the maximal
entropy plateau. Aside from this interval, the topological entropy seems to be
monotone increasing with a.
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Hénon family, Phys. D 52 (1991), no. 2-3, 171–178. MR MR1128987
(92g:58099)

[Eve79] Shimon Even, Graph algorithms, Computer Science Press Inc.,
Woodland Hills, Calif., 1979, Computer Software Engineering Series.
MR MR540205 (82e:68066)

[GH90] John Guckenheimer and Philip Holmes, Nonlinear oscillations, dy-
namical systems, and bifurcations of vector fields, Applied Math-
ematical Sciences, vol. 42, Springer-Verlag, New York, 1990, Re-
vised and corrected reprint of the 1983 original. MR MR1139515
(93e:58046)

26



[Hru06] Suzanne Lynch Hruska, A numerical method for constructing the
hyperbolic structure of complex Hénon mappings, Found. Comput.
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A Index Pairs for Hyperbolic Plateaus
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