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ABSTRACT

Suppose that a new technology emerges in an industry, and the object of

study is the adoption of this new technology. We view the comprising firms as

nodes of a graph, and proceed by assuming a known random graph structure.

To provide structure to analysis of the problem, we choose two different types

of random graphs - the Erdös-Rényi, and Newman-Strogatz-Watts graphs, and

assume that every vertex transmits to each of its neighbors at times that are inde-

pendent and identically distributed as exponential waiting times. Related prob-

lems have been considered by Economists for many years – Blume [1], looked

at interactions across lattices as a way of modeling game-theoretic interactions

between entire populations where individual players only interact with a finite

set of neighbors.

The structure of the model implies that expected percentage adoption de-

pends only on the expected size of the giant component of the graph. Thus, in

the Erdös-Rényi case, we model the process of transmission as an exploration

of its connected component, which behaves like a branching process. Using

the probability that this branching process becomes extinct we see that the two

parameters of the model are identifiable sequentially.

We also use simulation times and extinction probabilities of branching pro-

cesses to estimate the size of connected components given they are not the giant

component as a function of the probability of connected in the Erdös-Rényi case.

Finally, we consider the average distance between any two vertices of an Erdös-

Rényi random graph as a way to further understand the transmission process

and results.
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4.1 Erdös-Rényi distance distribution, n = 1000 . . . . . . . . . . . . . 29
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CHAPTER 1

INTRODUCTION

The primary analysis is motivated by the following estimation problem: sup-

pose that a new technology emerges in an industry, and the object of study is the

process of adoption of this new technology. Related problems have been con-

sidered by Economists for many years – Blume [1], looked at interactions across

lattices as a way of modeling game-theoretic interactions between entire pop-

ulations where individual players only interact with a finite set of neighbors.

The concept was subsequently generalized to more general types of graphs by

Morris [2]. Young and Burke [3] focused on customs and accepted practices that

lead to areas of local homogeneity, even though there may be global diversity.

More recently, Young [4] has also considered diversity amongst agents as a way

of explaining delay in the diffusion of objects of interest.

One way to model this industry is to view the comprising firms as nodes of a

graph, where transmission is possible between nodes connected by edges. The

idea, then, is to observe the pattern with which adoption occurs over time, and

attempt to estimate parameters of the model1.

It is clear that parameters relating to the following two properties are of in-

terest:

1. The level of connectivity between firms.

1Though this is a specific application we outline to motivate the analysis, precisely the same
set-up can correspond to any form of transmission in a setting where agents can be connected to
each other in a relevant manner. Epidemics are also commonly modeled as transmission across
random graphs: in the model detailed below, a reinterpretation of transmission of technology as
transmission of disease models the case where subjects are permanently infected. Transmission
of information across social networks (e.g. the spread of rumors) can also be considered in a
similar manner.
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Chapter 1. Introduction

2. The speed of transmission given two firms are connected.

To provide structure to analysis of the problem, we choose two different

types of random graphs - the Erdös-Rényi, and Newman-Strogatz-Watts graphs,

and assume that every vertex transmits to each of its neighbors at times that

are independent and identically distributed as exponential waiting times. An

Erdös-Rényi graph consists of n vertices, where each possible edge is present

independently with probability p. We will use p = λ/n in order to keep the

expected degree of every vertex independent of n.

A Newman-Strogatz-Watts graph assumes a fixed, known distribution for

the degrees of vertices, drawing from this distribution to choose the vertex de-

grees. We interpret these degrees as ‘half-edges’ attached to their corresponding

vertices, and then match up these half-edges randomly. Of particular interest

are power law distributions for the degree, where the fraction of vertices of de-

gree k, pk ∼ Ck−α as k →∞.

Parameters relating to the likelihood of connection in a statistical sense for

each type of graph (λ, the unscaled uniform probability of connection for the

Erdös-Rényi case, and α, the exponent on the power law degree distribution for

the Newman-Strogatz-Watts case) correspond to the level of connectivity, and

the rate of the exponential distribution waiting times to the ‘speed’ of transmis-

sion.

Subsequently, we run simulate transmission scenarios on specific instances

of generated random graphs and study the path of adoption. Transmission con-

tinues until either all vertices have been transmitted to, or all vertices connected

to vertices that can transmit have already been transmitted to. We consider

2



changes in the path, and then the final percentage of adoption, as a result of

changing basic parameters such as the size of the random graph, and parame-

ters in the algorithms to generate the graphs.

In both cases, the rate of the exponential distribution, as a result of inde-

pendence between waiting time in the model, primarily affects the time taken

to reach the final level of adoption, and the structure of the adoption path to a

much lower degree. Essentially then, in this model of transmission, the struc-

tural parameters of the random graph determine the distribution of the final

percentage adoption achievable, and the rate of the exponential transmission

determines the time taken. Therefore, we will use a rate of transmission µ = 1

for all simulations without loss of generality and observe that time gets scaled

by the rate.

Our simulations, due to computational time constraints2, typically have

fewer than 500 vertices. Though n is small, these sizes are interesting for two

reasons: First, for the application outlined, technology diffusion across indus-

try, this is actually a reasonable number of firms to consider. Second, random

graph analysis is typically conducted asymptotically, that is as n → ∞. One of

the points we consider, then, is to what extent classical results apply to graphs

of scales not so large.

As an example of the types of asymptotic results we have in mind, consider

one of the basic results of random graph theory: For the Erdös-Rényi random

graph, there is a key threshold for λ at 1: for λ < 1, the largest connected com-

ponent of the graph remains small (roughly O(log n) ), and for λ > 1, a giant

component emerges, and the largest component is θ(λ)n, where θ(λ) is a constant

2See Appendix A for figures showing runtimes for simulations as functions of the parameters
of the models.
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Chapter 1. Introduction

depending on λ [5, pp. 4 – 7]. This change in behavior around a threshold is re-

ferred to as a phase transition. A similar phase transition occurs in the Newman-

Strogatz-Watts case, depending on ν, a parameter defined in Section 2.2.

We use the Branching Process (initially a population growth model, where

at each iteration each object from the previous iteration generates offspring) to

model the process of exploring a connected component. Section 3.1 defines the

process formally, but the intuitive connection between this process and random

graphs is that starting with an individual vertex3 we can view its neighbors as its

children. The neighbors’ neighbors then become grandchildren. If the number

of vertices at distance k is Zk, then Zk behaves like a branching process [5].

We find that the structure of the model implies that the expected percent-

age adoption depends largely on the expected size of the giant component of the

graph. Thus, in the Erdös-Rényi case, we model the process of transmission as

an exploration of its connected component, which behaves like a branching pro-

cess. Using the probability that this branching process becomes extinct, we find

a predicted level of adoption which closely matches simulation results. Subse-

quently, we see that it is possible to identify the two parameters of the model

sequentially in this case. Section 3.3 explains the calculation and compares ex-

pected adoption with simulation results, concluding that the assumption of an

Erdös-Rényi structure makes both λ and µ identifiable in that order.

As simulated final adoption times are effectively an average over scenarios

where the connected component hit is the giant component and where the com-

ponent is not the giant component, we also use simulation times and extinction

probabilities of branching processes to estimate the size of connected compo-

3This is how our simulations work – we choose a vertex, and the process gets transmitted to
precisely the set generated by a branching process.

4



nents given they are not the giant component as a function of the probability

of connected in the Erdös-Rényi case. Finally, we also consider the average dis-

tance between any two vertices of an Erdös-Rényi random graph as a way to

further understand the transmission process and results.
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CHAPTER 2

TRANSMISSION ALONG RANDOM GRAPHS

We proceed by considering two different types of random graphs - the

Erdös-Rényi, and Newman-Strogatz-Watts graphs - as models for generating

sample graphs. Subsequently, by assuming a probability distribution for trans-

mission between connected nodes, we can simulate the process of transmission.

The Erdös-Rényi graph assumes any two nodes are connected independently

with probability p, and the Newman-Strogatz-Watts graph assumes a known

distribution for degrees of nodes, and pairs up half-edges after degrees are sam-

pled.

2.1 Erdös-Rényi Graph

We begin by making basic assumptions regarding the structure of the industry

to make the problem more specific. Suppose that an industry with n firms can

be modeled by a random graph with n nodes, and that node a, if possessing the

technology and connected to node b, transmits this technology at an exponential

rate with parameter µ. Thus, the probability that the transmission takes less than

t units of time is given by the cumulative distribution function

F(t, µ) = 1 − e−µt

We will use µ = 1, and observe that the expected transition time just scales

with µ everywhere, and nothing changes about the structure of results.

Consider the simplest possible structure for a random graph - each of the

6



2.1. Erdös-Rényi Graph

possible n(n − 1)/2 edges is present1 independently with probability λ/n [5, pp.

4 – 7]. Scaling down by a factor of n implies that increasing the size of the graph

does not affect the expected degree of each node. Consequently, we can consider

the probability of connection λ/n as representing the level of connectivity of the

chosen industry, and the rate of exponential transmission µ as capturing the

speed of transmission.

Observe that the degree distribution of any vertex, given this structure, is

Binomial(n − 1, λ/n), and that as n→∞, this converges to a Poisson distribution

with mean λ. One of the primary features of the Erdös-Rényi graph, as men-

tioned in Chapter 1, is the dramatic change in its connectivity properties around

the threshold λ = 1. We state the following two formal theorems regarding the

emergence of a giant component from Durrett [5, pp. 39–44].

Theorem 2.1.1. Let Ci be the connected set containing vertex i. Suppose λ < 1 and let

α = λ − 1 − log(λ) > 0. If a > 1
α
, then

P
(

max
1≤i≤n
|Ci| ≥ a log n

)

→ 0. (2.1)

Theorem 2.1.2. Suppose λ > 1. Then ∃ constant β so that with probability→ 1, there

is only one component of the random graph with more than β log n vertices. The size of

this component ∼ (1 − ρ(λ))n where ρ(λ) is the extinction probability for the Poisson(λ)

branching process2.

Thus, for λ < 1, we have an upper bound on the size of the largest connected

component, and for λ > 1, a lower bound on the size of the largest component,

as well as a formal statement about the uniqueness of the component.

1Loops and multiple edges between nodes are excluded here, nor are edges directed.
2See Section 3.1 for a formal definition of the extinction probability of a branching process.

7



Chapter 2. Transmission along random graphs

2.1.1 Algorithms

In the Erdös-Rényi case, generating the random graph is relatively simple:

1. Choose n, the number of vertices, λ, the unscaled probability of connection

2. Generate a sequence of i.i.d. binary random variables ζi, distributed 1 with

probability p and 0 with probability 1 − p , for 1 ≤ i ≤ n(n − 1)/2.

3. Populate the upper right half of an n × n matrix G with this sequence of ζi,

and reflect the sequence on the lower half to obtain a symmetric matrix cor-

responding with an undirected graph.

As noted above, we set µ = 1 with no loss of generality, as becomes clear with

the algorithm for simulating transmission; changing µ has a consistent effect on

the expected time of individual jump. We use the following steps to simulate a

transmission process given a specific random graph, corresponding to a matrix

G generated as explained above:

1. Let H j be the set of vertices possessing the technology at iteration j, with

H0 = {1}.

2. Let P j be the set of vertices to which transmission is possible after iteration j.

Let Ni be the set of neighbors of vertex i. Then P0 = N1, and in general

P j =



















⋃

i∈H j

Ni



















− H j

and the set of vertices to which transmission is possible is the set of vertices

connected to vertices to which transmission has already occurred3.

3For two sets A and B, A − B = A ∩ B′.
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2.1. Erdös-Rényi Graph

3. For each vertex i ∈ P j, calculate wi, the number of vertices in H j connected to

vertex i.

4. Associate with each vertex i ∈ P j an exponentially distributed random vari-

able Ti ∼ exp(µ × wi) (with these variables ti mutually independent).

5. Sample t j ∼ mini∈P j(Ti) as the time between iterations j − 1 and j. Then t j

is distributed4 exp



















∑

i∈P j

µ × wi



















. Choose the vertex transmission occurs to as

vertex k with probability

wk
∑

i∈P j
wi

and note that H j+1 = H j ∪ {k}.

6. Return to step 2 and repeat until P j = ∅.

Observe that the lack of memory property of the exponential distribution

is implicitly used here in making the algorithm as described above consistent

with one where an exponentially distributed variable is associated with every

relevant edge, and actual transmission occurs at a time which is their minimum.

Note, also, that the transmission process continues until the connected compo-

nent containing the vertex labelled as 1 is reached. The proportion of vertices to

which transmission occurs, then, depends largely on whether the initial vertex

chosen is in the giant component. We use this observation to compare simulated

percentages of adoption to expected adoption as λ varies in Section 3.3.

4Recall that for exponentially distributed random variables x ∼ exp(µ1) and y ∼ exp(µ2)
min(x, y) ∼ exp(µ1 + µ2).

9



Chapter 2. Transmission along random graphs

2.1.2 Simulation Results

Let H be the final set of vertices possessing the technology5. Define the fraction

of eventual adoption as |H|/n. By keeping track of the simulation times for each

of the vertices we can plot the adoption history of individual simulations. Fig-

ure 2.1 shows the adoption path for 10 independent runs of this simulation with

n = 500, λ = 2, µ = 1 and 10 trials.
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Figure 2.1: Erdös-Rényi Adoption times

Note that only for 7 of these trials does the technology reach a significant pro-

portion of the vertices. For a specific λ, qualitatively it is clear that the variation

in the clear S-curve is when adoption begins to accelerate, with a fairly similar

final percentage of adoption given that node 1 is in the giant component.

The unscaled probability of connection, λ, which determines the expected

5Note that H = C1 using the notation from Theorem 2.1.1.
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2.1. Erdös-Rényi Graph
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Figure 2.2: Erdös-Rényi Adoption times with λ varying within [1, 2]

proportion of vertices in the giant component, affects the final percentage adop-

tion significantly. Figure 2.2 shows the adoption path from simulations with

varying λ. As λ increases gradually from 1 to 2, we see an increase in the final

percentage of adoption, as well as an increase in the overall rate of transmission.

Thus, as λ increases, adoption paths shift up and to the left. An increase in λ also

increases the probability that vertex 1 is in the giant component, and thus the

likelihood that significant adoption occurs. It is also interesting to note that the

exponential increase in the rate of transmission occurs much faster. Finally, we

note that these are individual simulation paths, and some simulations start at a

small connected component, and no significant adoption occurs.

To analyze the ‘S-curve’ behavior, we compare results to the classic S-curve

– the solution to the logistic differential equation

11
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Figure 2.3: Erdös-Rényi final times with varying λ and superimposed
scaled inverse logistic function

d
dt

P(t) = P(t)(1 − P(t)) (2.2)

which has solution

P(t) =
et

et
+ ec

(2.3)

where for convenience we set the constant of integration c so that ec
= 1.

Figure 2.3 shows the results of a simulation with identical parameters to

those considered above, with µ = 1 again, and includes a scaled solution to

the logistic differential equation. It has been scaled to take time 12 and achieve

60% final adoption.
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Figure 2.4: Erdös-Rényi final percentage adoption with n = 300

It is clear that the final percentage of adoption depends only on λ, and not

on µ. Moreover, much of the variation is in how long transmission takes (and

whether the giant component is ‘hit’). Consequently, we can summarize results

by just considering the average final percentage of adoption over several trials

as a function of λ. Figure 2.4 shows final percentage adoption as a function of λ,

for n = 300. See Section 3.3 for a comparison of these simulation results with an

analytical expression for average percentage adoption.

The final question to consider is the impact of n on the structure of results.

Figure 2.5 shows the final percentage of adoption with varying λ and n, and it is

clear that percentage adoption depends primarily on λ. Section 3.3 formulates

the observations made here to compare simulated adoption as a function of λ

for n = 250 with expected adoption.
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Figure 2.5: Erdös-Rényi Adoption as a function of λ and n

2.2 Newman-Strogatz-Watts Graph

The simulations and results so far suggest that the primary data observations of

interest are the final percentage of adoption, and the eventual time until trans-

mission is completed, assuming this particular structure of the random graph.

From these two points it should be possible to conclude the parameters for

the random graph, though this effectively ignores the structure of the adop-

tion path. Consequently, we next consider a different model for the underlying

random graph, and study how this affects the results so far.

In an Erdös-Rényi random graph, vertices have degrees that have asymptot-

14



2.2. Newman-Strogatz-Watts Graph

ically a Poisson distribution. However, in social and communication networks,

the distribution of degrees often has a power law form, and hence the fraction

of vertices of degree k, pk ∼ Ck−α as k → ∞, for a constant C [5, pp. 71 – 76].

Consequently, a fixed degree degree distribution random graph provides, for

large degrees, asymptotic behavior perhaps better matching empirical observa-

tions. For the particular problem being referred to here, though, it is unclear

whether industrial connections mirror the behavior observed with social and

broader communication networks6.

We use a slight modification of the Newman-Strogatz-Watts approach [6, 7]:

Let d1, . . . dn be independent and distributed P(di = k) = pk. As di is the degree of

vertex i, condition on the requirement En = {d1+· · ·+dn is even}. Given this fixed

degree distribution, draw degrees for vertices, and then match up the half pairs

to produce a random graph. Our approach differs in that loops are explicitly

not permitted.

As mentioned in Chapter 1, a phase transition occurs in the Newman-

Strogatz-Watts case as well, leading the the existence of a giant component. The

formal result we quote regards the original case in which loops are permitted,

but the threshold presented remains a lower bound on the condition for the ex-

istence of a giant component. Suppose, then, that pk is the degree distribution

of the first vertex being analyzed. Given this information, it is no longer true

that its neighbors have the same distribution, as vertices with degree k are k

times as likely to be chosen to be connected. This leads to a size-biased degree

distribution

6To the extent that the work done is also applicable to modeling other types of transmission,
this particular distribution remains of interest. Particular firms are also likely to have a large
impact on technology adoption; the rubric of an industry leader that is commonly followed is
well known.

15



Chapter 2. Transmission along random graphs

qk−1 =
kpp

∑

k kpk
(2.4)

where the index on the left hand side is k − 1 as it is already known that the

‘second’ generation of vertices is connected to the first one. We choose α here so

that pk has finite second moment, and thus qk has a finite mean, ν. The condition

on the existence of a giant component is that ν > 1. We state the theorem from

Durrett [5, pp. 71 – 76] below.

Theorem 2.2.1. Let pk have generating function

G0 =

∑

k

pkz
k

and qk have generating function

G1 =

∑

k

qkz
k.

The condition for the existence of a giant component is ν > 1. In this case the fraction

of vertices in the giant component is asymptotically 1 −G0(ρ1) where ρ1 is the smallest

fixed point of G1 in [0, 1].

2.2.1 Algorithms

In this case, we use the following algorithm to generate the graph:

1. Choose n, the number of vertices, α, the exponent of the degree distribution

16



2.2. Newman-Strogatz-Watts Graph

2. Generate a sequence of i.i.d. random variables di from the distribution7 P(di =

k) = Ck−α for 1 ≤ i ≤ n. If En is not even, add let d1 = d1 + 1.

3. Consider each vertex i to have di half edges, and randomly pair these half

edges. The approach differs from the strict Newman-Strogatz-Watts model

in that loops are not permitted.

4. Populate the upper right half of an n×n matrix G with this sequence of edges,

and reflect the sequence on the lower half to obtain a symmetric matrix cor-

responding with an undirected graph.

Multiple edges, though, are permitted, and can be interpreted as stronger

connections between vertices, and this interpretation is consistent with sim-

ulation in that it enters in the parameter of the exponential waiting time for

transmission between them. Once a random graph is generated, the simulation

process is exactly analogous to that described in the case of the Erdös-Rényi

random graph.

2.2.2 Simulation Results

We now present results corresponding to those shown in Section 2.1.2 for the

Newman-Strogatz- Watts type random graph.

Figure 2.6 shows the adoption path for 10 independent runs of this simula-

tion with n = 500, α = 2.3, µ = 1 and 10 trials. The difference between the two

7C is chosen so that

C
∞
∑

n=1

n−α = 1

and the distribution is appropriately normalized.

17



Chapter 2. Transmission along random graphs
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Figure 2.6: Newman-Strogatz-Watts Adoption times with α = 2.3 and µ =
1, 10 trials

assumed structures becomes clear with a comparison to Figure 2.1 – though

both types of adoption paths can be described as S-curves, there is a distinct

rapid jump from the initial, slow phase, which then slows into a much flatter

final dissemination. On the other hand, the observations made above regard-

ing the variation across simulations being largely in the time taken to reach this

rapid jump, and in the final percentage of adoption to a much lesser degree, still

seem valid.

As above, α is the primary parameter which determines the primary struc-

ture of the adoption path. Figure 2.7 shows the adoption path from simulation

with varying α. As α decreases gradually from 3 to 2, we see an increase in the

final percentage of adoption, as well as an increase in the overall rate of trans-

mission. A comparison with Figure 2.2 further clarifies the distinction between
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2.2. Newman-Strogatz-Watts Graph
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Figure 2.7: Newman-Strogatz-Watts Adoption times with α varying
within [2, 3)

the two types of random graphs – in particular the final stage of transmission

takes relatively longer, and as α approaches 2 (and the plot of the adoption path

shifts to the left), the initial stage of the S-curve is no longer significant.

As above, we can summarize results by considering the average final per-

centage of adoption over several trials as a function of α. Figure 2.8 shows final

percentage adoption as a function of α, for n = 500. It is, however, important to

note that unlike the case for the Erdös-Rényi random graph structure, changing

α changes the structure of the model to some extent. As the assumed degree

distribution is Ck−α with C changing with α as well, the expected degree of ev-

ery vertex is changing8. In contrast, with the Erdös-Rényi case, the mean degree

8To some extent, this problem could be addressed by adding a constraint that the minimum
degree be 3. In this case, most of the vertices will eventually be transmitted to. Another ap-
proach would be to use the re-wiring model considered by Strogatz, which begins with a con-
nected ring and re-wires some edges randomly – unfortunately, this also means the graph is
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Figure 2.8: Newman-Strogatz-Watts Adoption with n = 500

does not change with λ as the probability is scaled.

Figure 2.9 shows the final percentage of adoption with varying α and n, and

it is clear that percentage adoption depends primarily on α.

very likely to be one single component.
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2.2. Newman-Strogatz-Watts Graph
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Figure 2.9: Newman-Strogatz-Watts Adoption
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CHAPTER 3

ERDÖS-RÉNYI ADOPTION AND THE BRANCHING PROCESS

This chapter is motivated by observations stemming from the results shown

in Figure 3.1, which shows the simulation time for transmission using the Erdös-

Rényi random graph as a function of λ and n. As can be seen, for fixed n the

simulation time increases initially as λ decreases, but then falls as λ continues to

increase.

0.5 1 1.5 2 2.5 3 3.5

0
50

100
150

200
2500
2
4
6
8

10
12
14

λ
n

Figure 3.1: Erdös-Rényi Simulation Time

Intuitively, this follows from the fact that the simulation essentially consists

of two different types of outcomes:
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3.1. Diameter of Connected Component Given Extinction

• The chosen vertex is not in the giant component, and virtually none of the

vertices are transmitted to. The process is relatively quick then.

• The chosen vertex is in the giant component, and virtually all vertices are

transmitted to. The process takes relatively longer.

As the simulation time is averaged across these two scenarios, initially as λ

increases, the probability the chosen vertex is in the giant component increases,

increasing the average simulation time. Subsequently, as λ continues to rise, in

most simulations the giant component is present, but as more edges are present

transmission occurs much faster. By using the expected diameter of the giant

component for large n, and the expected probability that a given edge is not in

the giant component, we can estimate the size of the connected component of a

vertex given it is not in the giant component as a function of λ.

3.1 Diameter of Connected Component Given Extinction

As Durrett [5, pp. 29 – 35] discusses, the evolution of the connected component

of a given vertex of the Erdös-Rényi random graph can be approximated as a

branching process, which we define formally below.

Definition 3.1.1 (Galton-Watson Process). Let Xt
i , i, t ≥ 0 be i.i.d random variables

defined on Z+. Define a sequence Zt for t ≥ 0 with Z0 = 1, and subsequently

Zt+1 =































Xt+1
1 + · · · + Xt+1

Zt
if Zt > 0

0 if Zt = 0

(3.1)

Zt is then said to follow the Galton-Watson (branching) process.
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Chapter 3. Erdös-Rényi Adoption and the Branching Process

As the branching process is defined, if Zt = 0 for some t, the process is said

to become extinct, whereas if Zt > 0 ∀t, the process does not become extinct.

Subsequently, asymptotic analysis of large graphs uses branching processes to

analyze the growth of connected components of a chosen edge. Given an Erdös-

Rényi structure, Xt
i is distributed Binomial with parameters p =

λ

n
and n, where

Xt
i represents the number of neighbors that the corresponding vertex has. Ap-

proximating the giant component as a branching process that survives forever,

it is clear that if the chosen vertex is not in a giant component, the size of its con-

nected component follows the size of a branching process that becomes extinct.

Now the probability that a branching process becomes extinct is given by

the fixed point of its generating function on the interval [0, 1) [8, pp. 29, 60

– 62]. Moreover, the generating function of a Binomial random variable with

parameters p and n is

n
∑

k=0

P(X = k)zk
=

k
∑

n=0

(

n
k

)

(zp)k(1 − p)n−k

and therefore

gX(z) = (1 − p + pz)n . (3.2)

The probability that the branching process becomes extinct, then, is the fixed

point of gX(z) for z ∈ [0, 1).

Figure 3.2 shows the relevant graph for λ = 1.5 and n = 500. The extinction

probability is approximately 0.42.
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3.2. Estimation
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Figure 3.2: Erdös-Rényi Generating Function and Extinction probability,
λ = 1.5, n = 500

3.2 Estimation

On order to get a point estimate of the overall population generated by the

branching process (which corresponds to the size of the connected component),

we need an estimate of the diameter of the giant component (to arrive at the ex-

pected simulation time when the chosen vertex is in the giant component). We

quote the following result from [5, pp. 45 – 47].

Theorem 3.2.1. Suppose λ > 1, and choose two vertices x and y randomly from the

giant component of an Erdös-Rényi random graph. Then the following convergence in

probability holds:

d(x, y)
log n

→
1

log λ
.

25



Chapter 3. Erdös-Rényi Adoption and the Branching Process

Finally, suppose ρ, the fixed point of gX(z) for z ∈ [0, 1), is the extinction

probability of the branching process corresponding to an Erdös-Rényi graph

with parameters λ and n. Then the expected simulation time is

Simulation Time = ρc(λ) + (1 − ρ)
log n
log λ

(3.3)

thus allowing a calculation of c(λ) from the simulation time.
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Figure 3.3: Erdös-Rényi connected component given extinction, n = 500

Figure 3.3 shows the diameter of the connected component as a function of

λ, for n = 300.
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3.3. Expected Adoption

3.3 Expected Adoption

A particularly interesting use of ρ, the probability that a branching process be-

comes extinct, is a simple expectation calculation that leads to a good analytical

estimate of average percentage adoption. We proceed with a method similar

to that used to formulate Equation 3.3. Essentially, as seen in the simulations

seen in Section 2.1.2, if the initial vertex chosen happens to be a branching pro-

cess which dies out, the percentage adoption is negligible, and there is minimal

contribution to the average percentage adoption.
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Figure 3.4: Erdös-Rényi simulated adoption (blue) and expected adoption
(green)

Now the probability that the branching process does not die out is 1 − ρ(λ),

which we will use twice to get the expected adoption to be
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Chapter 3. Erdös-Rényi Adoption and the Branching Process

E

(

|H|
n

)

=

[

1 − ρ(λ)
]2 (3.4)

as once the giant component is hit, one expects the entire giant component

to be transmitted to. Figure 3.4 compares simulated adoptions for n = 250 as

λ varies, and indeed this expression for the percentage adoption accurately de-

scribes the situation. Therefore, given empirical adoption paths and the size of

the industry, if an Erdös-Rényi structure is assumed, we can find λ, as it corre-

sponds to a unique probability of survival for the branching process. As there is

a one-to-one correspondence between λ and the probability of extinction, it can

be uniquely identified. Figure 3.5 shows λ as a function of percentage adoption.
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Figure 3.5: λ corresponding to percentage adoption for n = 250 given
Erdös-Rényi structure

Subsequently, µ can be identified by the time taken for the process to com-

plete.
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CHAPTER 4

DISTANCE DISTRIBUTIONS

Another facet of the structure of the random graphs being generated is the

distribution of d(x, y) for any two vertices x, y. The nature of this distribution

also provides insight into the results seen thus far. Figure 4.1 shows the distance

distribution of Erdös-Rényi random graphs (averaged for 500 pairs of vertices

each across 20 independently generated random graphs with n = 1000).
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Figure 4.1: Erdös-Rényi distance distribution, n = 1000

Observe that level sets of Figure 4.1 (for fixed λ) correspond to probability

‘distributions’ which do not add up in probability to 1. This is because any two
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Chapter 4. Distance Distributions

vertices, randomly chosen, need not be connected, in which case the distance

is ∞. Moreover, observe that as λ increases, we begin to see a concentration of

vertices in a middle bulge corresponding to the giant component.

The situation we analyze can be matched to that considered by van der Hofs-

tad [9] – the problem of first passage percolation with weighted edges – by con-

sidering the realized exponential waiting times as weights on the edges they

correspond to. Subsequently, given the manner of our analysis, vertices are

reached precisely using the route of shortest cumulative weight, which here is

minimal time. One of the results quoted in van der Hofstad [9] is that the ex-

pected graph distance between uniformly chosen pairs of connected vertices1,

for the Newman-Strogatz-Watts fixed distribution case with α ∈ (2, 3, ) is uni-

formly bounded (see Figure B.2, which considers the case corresponding to this

result).

1Observe that this conditional assumption is not being made above, but rescaling so that the
given distributions sum to 1 would correspond to this situation.
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APPENDIX A

RUNTIME FIGURES
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Figure A.1: Erdös-Rényi Runtime
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Appendix A. Runtime Figures
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Figure A.2: Newman-Strogatz-Watts Runtime
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APPENDIX B

MISCELLANEOUS FIGURES
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Figure B.1: Newman-Strogatz-Watts Simulation Time
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Appendix B. Miscellaneous Figures
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Figure B.2: Power law distance distribution, n = 1000
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